論文の概要: Scaling Parameter-Constrained Language Models with Quality Data
- arxiv url: http://arxiv.org/abs/2410.03083v1
- Date: Fri, 4 Oct 2024 02:07:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 03:56:19.563506
- Title: Scaling Parameter-Constrained Language Models with Quality Data
- Title(参考訳): 品質データを用いたパラメータ制約言語モデルのスケーリング
- Authors: Ernie Chang, Matteo Paltenghi, Yang Li, Pin-Jie Lin, Changsheng Zhao, Patrick Huber, Zechun Liu, Rastislav Rabatin, Yangyang Shi, Vikas Chandra,
- Abstract要約: 言語モデリングにおける法則のスケーリングは、伝統的にデータセットのサイズとモデルパラメータの関数としてトレーニング損失を定量化する。
我々は,従来のスケーリング法則の理解を,元の定式化におけるデータ品質の微視的なビューを提供することによって拡張する。
- 参考スコア(独自算出の注目度): 32.35610029333478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scaling laws in language modeling traditionally quantify training loss as a function of dataset size and model parameters, providing compute-optimal estimates but often neglecting the impact of data quality on model generalization. In this paper, we extend the conventional understanding of scaling law by offering a microscopic view of data quality within the original formulation -- effective training tokens -- which we posit to be a critical determinant of performance for parameter-constrained language models. Specifically, we formulate the proposed term of effective training tokens to be a combination of two readily-computed indicators of text: (i) text diversity and (ii) syntheticity as measured by a teacher model. We pretrained over $200$ models of 25M to 1.5B parameters on a diverse set of sampled, synthetic data, and estimated the constants that relate text quality, model size, training tokens, and eight reasoning task accuracy scores. We demonstrated the estimated constants yield +0.83 Pearson correlation with true accuracies, and analyzed it in scenarios involving widely-used data techniques such as data sampling and synthesis which aim to improve data quality.
- Abstract(参考訳): 言語モデリングにおける法則のスケーリングは、伝統的にデータセットのサイズとモデルパラメータの関数としてトレーニング損失を定量化し、計算最適推定を提供するが、しばしばデータ品質がモデル一般化に与える影響を無視する。
本稿では,パラメータ制約言語モデルの性能決定に重要な要因であると考えられる,原定式化におけるデータ品質の顕微鏡的ビュー – 効果的なトレーニングトークン – を提供することにより,従来のスケーリング法則の理解を拡大する。
具体的には、提案された効果的なトレーニングトークンの用語を、簡単に計算可能な2つのテキスト指標の組み合わせとして定式化する。
(i)テキストの多様性
二 教師モデルによる合成性。
テキストの品質,モデルサイズ,トレーニングトークン,および8つの推論タスク精度スコアに関連する定数を推定した。
我々は,推定定数+0.83ピアソン相関を真の精度と比較し,データサンプリングや合成といったデータ品質の向上を目的とした,広く使われているデータ技術を含むシナリオで解析した。
関連論文リスト
- Self-calibration for Language Model Quantization and Pruning [38.00221764773372]
量子化とプルーニングはモデル圧縮の基本的なアプローチである。
トレーニング後の環境では、最先端の量子化とプルーニングの方法はキャリブレーションデータを必要とする。
自己校正を解決策として提案する。
論文 参考訳(メタデータ) (2024-10-22T16:50:00Z) - From Text to Treatment Effects: A Meta-Learning Approach to Handling Text-Based Confounding [7.5348062792]
本稿では,共起変数をテキストで表現する場合のメタラーナーの性能について検討する。
共同創設者の事前学習したテキスト表現を用いた学習者は,CATE推定精度の向上を図っている。
テキスト埋め込みの絡み合った性質のため、これらのモデルは、完全な共同創設者の知識を持つメタ学習者のパフォーマンスと完全には一致しない。
論文 参考訳(メタデータ) (2024-09-23T19:46:19Z) - QuRating: Selecting High-Quality Data for Training Language Models [64.83332850645074]
データ品質に関する人間の直感をキャプチャできる事前学習データを選択するQuRatingを導入する。
本稿では,書体,専門知識,事実とトリビア,教育的価値の4つの特性について検討する。
ペアの判断からスカラー評価を学習するためにQurモデルをトレーニングし、それを4つの基準ごとに品質評価付き260Bのトレーニングコーパスにアノテートするために使用します。
論文 参考訳(メタデータ) (2024-02-15T06:36:07Z) - Influence Scores at Scale for Efficient Language Data Sampling [3.072340427031969]
影響スコア」は、データの重要なサブセットを特定するために使われる。
本稿では,言語分類タスクにおける影響スコアの適用性について検討する。
論文 参考訳(メタデータ) (2023-11-27T20:19:22Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
量子化法における実データを用いたキャリブレーションの代用として合成データを用いた場合について検討する。
本稿では,StyleGAN2-ADAが生成したデータと事前学習したDiStyleGANを用いて定量化したモデルの性能と,実データを用いた量子化とフラクタル画像に基づく代替データ生成手法との比較を行った。
論文 参考訳(メタデータ) (2023-05-10T11:10:09Z) - Leveraging Synthetic Targets for Machine Translation [5.302421715411791]
本研究では,合成目標のトレーニングモデルが実際の地上構造データよりも優れていることを示す。
我々は、この性能向上が最適化の容易性や予測のより決定論的性質に結びついているかどうかを予備分析する。
論文 参考訳(メタデータ) (2023-05-07T07:42:22Z) - SynBench: Task-Agnostic Benchmarking of Pretrained Representations using
Synthetic Data [78.21197488065177]
近年、下流のタスクで大規模なデータで事前訓練された微調整大型モデルが成功し、ディープラーニングにおける重要なパラダイムシフトにつながった。
本稿では,合成データを用いて事前学習した表現の質を測定するためのタスク非依存フレームワークであるtextitSynBenchを提案する。
論文 参考訳(メタデータ) (2022-10-06T15:25:00Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Evaluating natural language processing models with generalization
metrics that do not need access to any training or testing data [66.11139091362078]
本稿では,Hugingface から事前学習した大規模トランスフォーマーに対して,一般化指標を用いた最初のモデル選択結果を提案する。
ニッチな状況にもかかわらず、ヘビーテール(HT)の観点から派生したメトリクスは、特にNLPタスクにおいて有用である。
論文 参考訳(メタデータ) (2022-02-06T20:07:35Z) - How much pretraining data do language models need to learn syntax? [12.668478784932878]
トランスフォーマーに基づく事前訓練型言語モデルは、多くのよく知られたNLUベンチマークにおいて優れた結果を得る。
本稿では,RoBERTaを用いたモデル知識に対する事前学習データサイズの影響について検討する。
論文 参考訳(メタデータ) (2021-09-07T15:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。