ARB-LLM: Alternating Refined Binarizations for Large Language Models
- URL: http://arxiv.org/abs/2410.03129v2
- Date: Thu, 10 Oct 2024 05:38:46 GMT
- Title: ARB-LLM: Alternating Refined Binarizations for Large Language Models
- Authors: Zhiteng Li, Xianglong Yan, Tianao Zhang, Haotong Qin, Dong Xie, Jiang Tian, zhongchao shi, Linghe Kong, Yulun Zhang, Xiaokang Yang,
- Abstract summary: ARB-LLM is a novel 1-bit post-training quantization (PTQ) technique tailored for Large Language Models (LLMs)
As a binary PTQ method, our ARB-LLM$_textRC$ is the first to surpass FP16 models of the same size.
- Score: 82.24826360906341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have greatly pushed forward advancements in natural language processing, yet their high memory and computational demands hinder practical deployment. Binarization, as an effective compression technique, can shrink model weights to just 1 bit, significantly reducing the high demands on computation and memory. However, current binarization methods struggle to narrow the distribution gap between binarized and full-precision weights, while also overlooking the column deviation in LLM weight distribution. To tackle these issues, we propose ARB-LLM, a novel 1-bit post-training quantization (PTQ) technique tailored for LLMs. To narrow the distribution shift between binarized and full-precision weights, we first design an alternating refined binarization (ARB) algorithm to progressively update the binarization parameters, which significantly reduces the quantization error. Moreover, considering the pivot role of calibration data and the column deviation in LLM weights, we further extend ARB to ARB-X and ARB-RC. In addition, we refine the weight partition strategy with column-group bitmap (CGB), which further enhance performance. Equipping ARB-X and ARB-RC with CGB, we obtain ARB-LLM$_\text{X}$ and ARB-LLM$_\text{RC}$ respectively, which significantly outperform state-of-the-art (SOTA) binarization methods for LLMs. As a binary PTQ method, our ARB-LLM$_\text{RC}$ is the first to surpass FP16 models of the same size. The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM.
Related papers
- SpaLLM: Unified Compressive Adaptation of Large Language Models with Sketching [32.4599581528901]
"Two-tower" architecture is used for compressing pre-trained LLM parameters into compact representations and fine-tuning the additive full-precision adapter.
We propose SpaLLM (Sketched Adapting of LLMs), a novel compressive adaptation approach for LLMs.
We show that SpaLLM sketches pre-trained LLM weights into lookup tables and directly fine-tunes the values in these tables.
arXiv Detail & Related papers (2024-10-08T20:58:24Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - STBLLM: Breaking the 1-Bit Barrier with Structured Binary LLMs [28.70239743254508]
We present the first structural binarization method for LLM compression to less than 1-bit precision.
We observe that some weights in binarized LLMs can be randomly flipped without significant performance degradation.
Our approach performs better than other compressed binarization methods while significantly reducing memory requirements.
arXiv Detail & Related papers (2024-08-03T15:07:44Z) - From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank Gradients [86.40635601953446]
We study the emergence of low-rank structures across different layers of Modern Large Language Models.
We present Weight Low-Rank Projection (WeLore) that unifies weight compression and memory-efficient fine-tuning as ONE.
arXiv Detail & Related papers (2024-07-15T21:05:20Z) - OneBit: Towards Extremely Low-bit Large Language Models [66.29839811207617]
This paper boldly quantizes the weight matrices of LLMs to 1-bit, paving the way for the extremely low bit-width deployment of LLMs.
Experiments indicate that OneBit achieves good performance (at least 81% of the non-quantized performance on LLaMA models) with robust training processes.
arXiv Detail & Related papers (2024-02-17T14:26:57Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLM is a groundbreaking 1-bit post-training quantization scheme tailored for pretrained large language models.
It achieves for the first time high-accuracy inference (e.g. 8.41 perplexity on LLaMA2-70B) with only 1.08-bit weights across various LLMs families.
arXiv Detail & Related papers (2024-02-06T09:26:34Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
Our algorithm, called AQLM, generalizes the classic Additive Quantization (AQ) approach for information retrieval.
We provide fast GPU and CPU implementations of AQLM for token generation, which enable us to match or outperform optimized FP16 implementations for speed.
arXiv Detail & Related papers (2024-01-11T18:54:44Z) - Distributed bundle adjustment with block-based sparse matrix compression
for super large scale datasets [0.0]
We propose a distributed bundle adjustment (DBA) method using the exact Levenberg-Marquardt (LM) algorithm for super large-scale datasets.
For the first time, we conducted parallel bundle adjustment using LM algorithm on a real datasets with 1.18 million images and a synthetic dataset with 10 million images.
arXiv Detail & Related papers (2023-07-17T10:43:54Z) - Exact Backpropagation in Binary Weighted Networks with Group Weight
Transformations [0.0]
Quantization based model compression serves as high performing and fast approach for inference.
Models that constrain the weights to binary values enable efficient implementation of the ubiquitous dot product.
arXiv Detail & Related papers (2021-07-03T10:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.