Remaining Useful Life Prediction: A Study on Multidimensional Industrial Signal Processing and Efficient Transfer Learning Based on Large Language Models
- URL: http://arxiv.org/abs/2410.03134v1
- Date: Fri, 4 Oct 2024 04:21:53 GMT
- Title: Remaining Useful Life Prediction: A Study on Multidimensional Industrial Signal Processing and Efficient Transfer Learning Based on Large Language Models
- Authors: Yan Chen, Cheng Liu,
- Abstract summary: This paper introduces an innovative regression framework utilizing large language models (LLMs) for RUL prediction.
Experiments on the Turbofan engine's RUL prediction task show that the proposed model surpasses state-of-the-art (SOTA) methods.
With minimal target domain data for fine-tuning, the model outperforms SOTA methods trained on full target domain data.
- Score: 6.118896920507198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remaining useful life (RUL) prediction is crucial for maintaining modern industrial systems, where equipment reliability and operational safety are paramount. Traditional methods, based on small-scale deep learning or physical/statistical models, often struggle with complex, multidimensional sensor data and varying operating conditions, limiting their generalization capabilities. To address these challenges, this paper introduces an innovative regression framework utilizing large language models (LLMs) for RUL prediction. By leveraging the modeling power of LLMs pre-trained on corpus data, the proposed model can effectively capture complex temporal dependencies and improve prediction accuracy. Extensive experiments on the Turbofan engine's RUL prediction task show that the proposed model surpasses state-of-the-art (SOTA) methods on the challenging FD002 and FD004 subsets and achieves near-SOTA results on the other subsets. Notably, different from previous research, our framework uses the same sliding window length and all sensor signals for all subsets, demonstrating strong consistency and generalization. Moreover, transfer learning experiments reveal that with minimal target domain data for fine-tuning, the model outperforms SOTA methods trained on full target domain data. This research highlights the significant potential of LLMs in industrial signal processing and RUL prediction, offering a forward-looking solution for health management in future intelligent industrial systems.
Related papers
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
This work demonstrates that the tools and principles driving the success of large language models (LLMs) can be repurposed to tackle distribution-level tasks.
We propose meta-statistical learning, a framework inspired by multi-instance learning that reformulates statistical inference tasks as supervised learning problems.
arXiv Detail & Related papers (2025-02-17T18:04:39Z) - Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.
LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space.
LTMs significantly outperform conventional autoregressive models and discrete diffusion models in validation perplexity and zero-shot language modeling.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - A Text-Based Knowledge-Embedded Soft Sensing Modeling Approach for General Industrial Process Tasks Based on Large Language Model [16.842988666530204]
Data-driven soft sensors (DDSS) have become mainstream methods for predicting key performance indicators in process industries.
Development requires complex and costly customized designs tailored to various tasks during the modeling process.
We propose a general framework named LLM-TKESS (large language model for text-based knowledge-embedded soft sensing) for enhanced soft sensing modeling.
arXiv Detail & Related papers (2025-01-09T08:59:14Z) - Data-driven tool wear prediction in milling, based on a process-integrated single-sensor approach [1.6574413179773764]
This study explores data-driven methods, in particular deep learning, for tool wear prediction.
The study evaluates several machine learning models, including convolutional neural networks (CNN), long short-term memory networks (LSTM), support vector machines (SVM) and decision trees.
The ConvNeXt model has an exceptional performance, achieving a 99.1% accuracy in identifying tool wear using data from only four milling tools operated until they are worn.
arXiv Detail & Related papers (2024-12-27T23:10:32Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations [1.5723316845301678]
This report introduces a novel methodology for training with augmentations to enhance model robustness and performance in such conditions.
We present a comprehensive framework that includes identifying weak spots in Machine Learning models, selecting suitable augmentations, and devising effective training strategies.
Experimental results demonstrate improvements in model performance, as measured by commonly used metrics such as mean Average Precision (mAP) and mean Intersection over Union (mIoU) on open-source object detection and semantic segmentation models and datasets.
arXiv Detail & Related papers (2024-08-30T14:15:48Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
We propose a Machine Learning-based model that leverages novel key predictors for estimating pathloss.
By quantitatively evaluating the ability of various ML algorithms in terms of predictive, generalization and computational performance, our results show that Light Gradient Boosting Machine (LightGBM) algorithm overall outperforms others.
arXiv Detail & Related papers (2022-01-30T19:50:16Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
The remaining Useful Life (RUL) of equipment is defined as the duration between the current time and its failure.
We propose an end-to-end deep learning model based on multi-layer perceptron and long short-term memory layers (LSTM) to predict the RUL.
We will discuss how the proposed end-to-end model is able to achieve such good results and compare it to other deep learning and state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T16:45:18Z) - Goal-Directed Planning for Habituated Agents by Active Inference Using a
Variational Recurrent Neural Network [5.000272778136268]
This study shows that the predictive coding (PC) and active inference (AIF) frameworks can develop better generalization by learning a prior distribution in a low dimensional latent state space.
In our proposed model, learning is carried out by inferring optimal latent variables as well as synaptic weights for maximizing the evidence lower bound.
Our proposed model was evaluated with both simple and complex robotic tasks in simulation, which demonstrated sufficient generalization in learning with limited training data.
arXiv Detail & Related papers (2020-05-27T06:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.