Unveiling LLM Mechanisms Through Neural ODEs and Control Theory
- URL: http://arxiv.org/abs/2406.16985v1
- Date: Sun, 23 Jun 2024 22:56:34 GMT
- Title: Unveiling LLM Mechanisms Through Neural ODEs and Control Theory
- Authors: Yukun Zhang,
- Abstract summary: This study uses Neural Ordinary Differential Equations to unravel the intricate relationships between inputs and outputs in Large Language Models (LLMs)
Neural ODEs play a pivotal role in this investigation by providing a dynamic model that captures the continuous evolution of data within the LLMs.
robust control mechanisms are applied to strategically adjust the model's outputs, ensuring they not only maintain high quality and reliability but also adhere to specific performance criteria.
- Score: 3.4039202831583903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a novel approach that leverages Neural Ordinary Differential Equations (Neural ODEs) to unravel the intricate relationships between inputs and outputs in Large Language Models (LLMs), and employs robust control to fine-tune outputs to meet predefined standards. Central to our methodology is the transformation of LLM inputs and outputs into a lower-dimensional latent space, facilitating a detailed examination of the information processing pathways within LLMs. Neural ODEs play a pivotal role in this investigation by providing a dynamic model that captures the continuous evolution of data within the LLMs. Additionally, robust control mechanisms are applied to strategically adjust the model's outputs, ensuring they not only maintain high quality and reliability but also adhere to specific performance criteria. This fusion of Neural ODEs and robust control represents a significant advancement in LLM interpretability, offering a comprehensive framework that elucidates the previously opaque mechanisms of these complex models. Our empirical results validate the effectiveness of this integrated approach, making a substantial contribution to the field of explainable AI by merging advanced machine learning techniques with the critical need for transparency and control in AI outputs.
Related papers
- DLBacktrace: A Model Agnostic Explainability for any Deep Learning Models [1.747623282473278]
Deep learning models operate as opaque 'black boxes' with limited transparency in their decision-making processes.
This study addresses the pressing need for interpretability in AI systems, emphasizing its role in fostering trust, ensuring accountability, and promoting responsible deployment in mission-critical fields.
We introduce DLBacktrace, an innovative technique developed by the AryaXAI team to illuminate model decisions across a wide array of domains.
arXiv Detail & Related papers (2024-11-19T16:54:30Z) - OWLed: Outlier-weighed Layerwise Pruning for Efficient Autonomous Driving Framework [3.8320050452121692]
We introduce OWLed, the Outlier-Weighed Layerwise Pruning for Efficient Autonomous Driving Framework.
Our method assigns non-uniform sparsity ratios to different layers based on the distribution of outlier features.
To ensure the compressed model adapts well to autonomous driving tasks, we incorporate driving environment data into both the calibration and pruning processes.
arXiv Detail & Related papers (2024-11-12T10:55:30Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control.
We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
arXiv Detail & Related papers (2024-10-07T23:38:58Z) - Remaining Useful Life Prediction: A Study on Multidimensional Industrial Signal Processing and Efficient Transfer Learning Based on Large Language Models [6.118896920507198]
This paper introduces an innovative regression framework utilizing large language models (LLMs) for RUL prediction.
Experiments on the Turbofan engine's RUL prediction task show that the proposed model surpasses state-of-the-art (SOTA) methods.
With minimal target domain data for fine-tuning, the model outperforms SOTA methods trained on full target domain data.
arXiv Detail & Related papers (2024-10-04T04:21:53Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
Large Language Models (LLMs) have revolutionized text generation, producing outputs that closely mimic human writing.
We present Distribution-Aligned LLMs Detection (DALD), an innovative framework that redefines the state-of-the-art performance in black-box text detection.
DALD is designed to align the surrogate model's distribution with that of unknown target LLMs, ensuring enhanced detection capability and resilience against rapid model iterations.
arXiv Detail & Related papers (2024-06-07T19:38:05Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
This paper investigates whether the pattern recognition and sequence modeling capabilities of LLMs can be extended to the domain of knowledge tracing.
We compare two approaches to using LLMs for this task, zero-shot prompting and model fine-tuning, with existing, non-LLM approaches to knowledge tracing.
While LLM-based approaches do not achieve state-of-the-art performance, fine-tuned LLMs surpass the performance of naive baseline models and perform on par with standard Bayesian Knowledge Tracing approaches.
arXiv Detail & Related papers (2024-02-29T14:06:34Z) - Large Language Model-Based Interpretable Machine Learning Control in Building Energy Systems [3.0309252269809264]
This paper investigates and explores Interpretable Machine Learning (IML), a branch of Machine Learning (ML) that enhances transparency and understanding of models and their inferences.
We develop an innovative framework that combines the principles of Shapley values and the in-context learning feature of Large Language Models (LLMs)
The paper presents a case study to demonstrate the feasibility of the developed IML framework for model predictive control-based precooling under demand response events in a virtual testbed.
arXiv Detail & Related papers (2024-02-14T21:19:33Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.