Unveiling LLM Mechanisms Through Neural ODEs and Control Theory
- URL: http://arxiv.org/abs/2406.16985v1
- Date: Sun, 23 Jun 2024 22:56:34 GMT
- Title: Unveiling LLM Mechanisms Through Neural ODEs and Control Theory
- Authors: Yukun Zhang,
- Abstract summary: This study uses Neural Ordinary Differential Equations to unravel the intricate relationships between inputs and outputs in Large Language Models (LLMs)
Neural ODEs play a pivotal role in this investigation by providing a dynamic model that captures the continuous evolution of data within the LLMs.
robust control mechanisms are applied to strategically adjust the model's outputs, ensuring they not only maintain high quality and reliability but also adhere to specific performance criteria.
- Score: 3.4039202831583903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a novel approach that leverages Neural Ordinary Differential Equations (Neural ODEs) to unravel the intricate relationships between inputs and outputs in Large Language Models (LLMs), and employs robust control to fine-tune outputs to meet predefined standards. Central to our methodology is the transformation of LLM inputs and outputs into a lower-dimensional latent space, facilitating a detailed examination of the information processing pathways within LLMs. Neural ODEs play a pivotal role in this investigation by providing a dynamic model that captures the continuous evolution of data within the LLMs. Additionally, robust control mechanisms are applied to strategically adjust the model's outputs, ensuring they not only maintain high quality and reliability but also adhere to specific performance criteria. This fusion of Neural ODEs and robust control represents a significant advancement in LLM interpretability, offering a comprehensive framework that elucidates the previously opaque mechanisms of these complex models. Our empirical results validate the effectiveness of this integrated approach, making a substantial contribution to the field of explainable AI by merging advanced machine learning techniques with the critical need for transparency and control in AI outputs.
Related papers
- Enhancing Semantic Consistency of Large Language Models through Model Editing: An Interpretability-Oriented Approach [28.07366458452159]
Large Language Models (LLM) generate inconsistent and sometimes contradictory outputs when presented with a prompt that has equivalent semantics but is expressed differently from the original prompt.
To achieve semantic consistency of an LLM, one of the key approaches is to finetune the model with prompt-output pairs with semantically equivalent meanings.
We propose a more interpretable method (i.e., model editing) to enhance the semantic consistency of LLMs.
arXiv Detail & Related papers (2025-01-19T13:26:15Z) - LF-Steering: Latent Feature Activation Steering for Enhancing Semantic Consistency in Large Language Models [16.37602070339033]
Large Language Models (LLMs) often generate inconsistent responses when prompted with semantically equivalent paraphrased inputs.
We propose LF-Steering, a novel activation steering approach to precisely identify latent feature representations responsible for semantic inconsistency.
Our method maps the hidden states of the relevant transformer layer into a sparsely activated, high-dimensional feature space based on a sparse autoencoder.
arXiv Detail & Related papers (2025-01-19T13:06:51Z) - SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding [66.74446220401296]
We propose SynerGen-VL, a simple yet powerful encoder-free MLLM capable of both image understanding and generation.
We introduce the token folding mechanism and the vision-expert-based progressive alignment pretraining strategy, which effectively support high-resolution image understanding.
Our code and models shall be released.
arXiv Detail & Related papers (2024-12-12T18:59:26Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control.
We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
arXiv Detail & Related papers (2024-10-07T23:38:58Z) - Remaining Useful Life Prediction: A Study on Multidimensional Industrial Signal Processing and Efficient Transfer Learning Based on Large Language Models [6.118896920507198]
This paper introduces an innovative regression framework utilizing large language models (LLMs) for RUL prediction.
Experiments on the Turbofan engine's RUL prediction task show that the proposed model surpasses state-of-the-art (SOTA) methods.
With minimal target domain data for fine-tuning, the model outperforms SOTA methods trained on full target domain data.
arXiv Detail & Related papers (2024-10-04T04:21:53Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
Large Language Models (LLMs) have revolutionized text generation, producing outputs that closely mimic human writing.
We present Distribution-Aligned LLMs Detection (DALD), an innovative framework that redefines the state-of-the-art performance in black-box text detection.
DALD is designed to align the surrogate model's distribution with that of unknown target LLMs, ensuring enhanced detection capability and resilience against rapid model iterations.
arXiv Detail & Related papers (2024-06-07T19:38:05Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
This paper investigates whether the pattern recognition and sequence modeling capabilities of LLMs can be extended to the domain of knowledge tracing.
We compare two approaches to using LLMs for this task, zero-shot prompting and model fine-tuning, with existing, non-LLM approaches to knowledge tracing.
While LLM-based approaches do not achieve state-of-the-art performance, fine-tuned LLMs surpass the performance of naive baseline models and perform on par with standard Bayesian Knowledge Tracing approaches.
arXiv Detail & Related papers (2024-02-29T14:06:34Z) - Large Language Model-Based Interpretable Machine Learning Control in Building Energy Systems [3.0309252269809264]
This paper investigates and explores Interpretable Machine Learning (IML), a branch of Machine Learning (ML) that enhances transparency and understanding of models and their inferences.
We develop an innovative framework that combines the principles of Shapley values and the in-context learning feature of Large Language Models (LLMs)
The paper presents a case study to demonstrate the feasibility of the developed IML framework for model predictive control-based precooling under demand response events in a virtual testbed.
arXiv Detail & Related papers (2024-02-14T21:19:33Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.