Can LLMs Generate Diverse Molecules? Towards Alignment with Structural Diversity
- URL: http://arxiv.org/abs/2410.03138v2
- Date: Mon, 17 Feb 2025 08:23:11 GMT
- Title: Can LLMs Generate Diverse Molecules? Towards Alignment with Structural Diversity
- Authors: Hyosoon Jang, Yunhui Jang, Jaehyung Kim, Sungsoo Ahn,
- Abstract summary: We propose a new method for fine-tuning molecular generative LLMs to autoregressively generate a set of structurally diverse molecules.<n>Our approach consists of two stages: (1) supervised fine-tuning to adapt LLMs to autoregressively generate molecules in a sequence and (2) reinforcement learning to maximize structural diversity within the generated molecules.
- Score: 16.964217425866746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in large language models (LLMs) have demonstrated impressive performance in molecular generation, which offers potential to accelerate drug discovery. However, the current LLMs overlook a critical requirement for drug discovery: proposing a diverse set of molecules. This diversity is essential for improving the chances of finding a viable drug, as it provides alternative molecules that may succeed where others fail in real-world validations. Nevertheless, the LLMs often output structurally similar molecules. While decoding schemes like diverse beam search may enhance textual diversity, this often does not align with molecular structural diversity. In response, we propose a new method for fine-tuning molecular generative LLMs to autoregressively generate a set of structurally diverse molecules, where each molecule is generated by conditioning on the previously generated molecules. Our approach consists of two stages: (1) supervised fine-tuning to adapt LLMs to autoregressively generate molecules in a sequence and (2) reinforcement learning to maximize structural diversity within the generated molecules. Our experiments show that the proposed approach enables LLMs to generate diverse molecules better than existing approaches for diverse sequence generation.
Related papers
- mCLM: A Function-Infused and Synthesis-Friendly Modular Chemical Language Model [65.69164455183956]
We propose mCLM, a modular Chemical-Language Model tokenizing molecules into building blocks and learning a bilingual language model of both natural language descriptions of functions and molecule building blocks.<n>In experiments on 430 FDA-approved drugs, we find mCLM capable of significantly improving 5 out of 6 chemical functions critical to determining drug potentials.
arXiv Detail & Related papers (2025-05-18T22:52:39Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
Large Language Models (LLMs) have demonstrated great performance in few-shot In-Context Learning (ICL)
We develop a new semi-supervised learning method that overcomes the lack of experimental data available for many-shot ICL.
As we show, the new method greatly improves upon existing ICL methods for molecular design while being accessible and easy to use for scientists.
arXiv Detail & Related papers (2024-07-26T21:10:50Z) - MolX: Enhancing Large Language Models for Molecular Learning with A Multi-Modal Extension [34.586861881519134]
Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields.
This study seeks to enhance the ability of LLMs to comprehend molecules by equipping them with a multi-modal external module, namely MolX.
In particular, instead of directly using a SMILES string to represent a molecule, we utilize specific encoders to extract fine-grained features from both SMILES string and 2D molecular graph representations.
arXiv Detail & Related papers (2024-06-10T20:25:18Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - DrugLLM: Open Large Language Model for Few-shot Molecule Generation [20.680942401843772]
DrugLLM learns how to modify molecules in drug discovery by predicting the next molecule based on past modifications.
In computational experiments, DrugLLM can generate new molecules with expected properties based on limited examples.
arXiv Detail & Related papers (2024-05-07T09:18:13Z) - Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel
Approach to Generating Molecules with Desirable Properties [33.2976176283611]
We present a novel approach to generating molecules with desirable properties, which expands the diffusion model framework with multiple innovative designs.
To get desirable molecular fragments, we develop a novel electronic effect based fragmentation method.
We show that the molecules generated by our proposed method have better validity, uniqueness, novelty, Fr'echet ChemNet Distance (FCD), QED, and PlogP than those generated by current SOTA models.
arXiv Detail & Related papers (2023-10-05T11:43:21Z) - Can Large Language Models Empower Molecular Property Prediction? [16.5246941211725]
Molecular property prediction has gained significant attention due to its transformative potential in scientific disciplines.
Recently, the rapid development of Large Language Models (LLMs) has revolutionized the field of NLP.
In this work, we advance towards this objective through two perspectives: zero/few-shot molecular classification, and using the new explanations generated by LLMs as representations of molecules.
arXiv Detail & Related papers (2023-07-14T16:06:42Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
Large Language Models (LLMs) have shown remarkable performance in various cross-modal tasks.
In this work, we propose an In-context Few-Shot Molecule Learning paradigm for molecule-caption translation.
We evaluate the effectiveness of MolReGPT on molecule-caption translation, including molecule understanding and text-based molecule generation.
arXiv Detail & Related papers (2023-06-11T08:16:25Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
We introduce a novel framework for scalable 3D design that uses a hierarchical agent to build molecules.
In a variety of experiments, we show that our agent, guided only by energy considerations, can efficiently learn to produce molecules with over 100 atoms.
arXiv Detail & Related papers (2022-02-01T18:54:24Z) - Learning a Continuous Representation of 3D Molecular Structures with
Deep Generative Models [0.0]
Generative models are an entirely different approach that learn to represent and optimize molecules in a continuous latent space.
We describe deep generative models of three dimensional molecular structures using atomic density grids.
We are also able to sample diverse sets of molecules based on a given input compound to increase the probability of creating valid, drug-like molecules.
arXiv Detail & Related papers (2020-10-17T01:15:47Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.