Autonomous Character-Scene Interaction Synthesis from Text Instruction
- URL: http://arxiv.org/abs/2410.03187v2
- Date: Tue, 8 Oct 2024 17:58:42 GMT
- Title: Autonomous Character-Scene Interaction Synthesis from Text Instruction
- Authors: Nan Jiang, Zimo He, Zi Wang, Hongjie Li, Yixin Chen, Siyuan Huang, Yixin Zhu,
- Abstract summary: We introduce a framework for synthesizing multi-stage scene-aware interaction motions directly from a single text instruction and goal location.
Our approach employs an auto-regressive diffusion model to synthesize the next motion segment, along with an autonomous scheduler predicting the transition for each action stage.
We present a comprehensive motion-captured dataset comprising 16 hours of motion sequences in 120 indoor scenes covering 40 types of motions, each annotated with precise language descriptions.
- Score: 45.255215402142596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthesizing human motions in 3D environments, particularly those with complex activities such as locomotion, hand-reaching, and human-object interaction, presents substantial demands for user-defined waypoints and stage transitions. These requirements pose challenges for current models, leading to a notable gap in automating the animation of characters from simple human inputs. This paper addresses this challenge by introducing a comprehensive framework for synthesizing multi-stage scene-aware interaction motions directly from a single text instruction and goal location. Our approach employs an auto-regressive diffusion model to synthesize the next motion segment, along with an autonomous scheduler predicting the transition for each action stage. To ensure that the synthesized motions are seamlessly integrated within the environment, we propose a scene representation that considers the local perception both at the start and the goal location. We further enhance the coherence of the generated motion by integrating frame embeddings with language input. Additionally, to support model training, we present a comprehensive motion-captured dataset comprising 16 hours of motion sequences in 120 indoor scenes covering 40 types of motions, each annotated with precise language descriptions. Experimental results demonstrate the efficacy of our method in generating high-quality, multi-stage motions closely aligned with environmental and textual conditions.
Related papers
- KinMo: Kinematic-aware Human Motion Understanding and Generation [6.962697597686156]
Controlling human motion based on text presents an important challenge in computer vision.
Traditional approaches often rely on holistic action descriptions for motion synthesis.
We propose a novel motion representation that decomposes motion into distinct body joint group movements.
arXiv Detail & Related papers (2024-11-23T06:50:11Z) - Versatile Motion Language Models for Multi-Turn Interactive Agents [28.736843383405603]
We introduce Versatile Interactive Motion language model, which integrates both language and motion modalities.
We evaluate the versatility of our method across motion-related tasks, motion to text, text to motion, reaction generation, motion editing, and reasoning about motion sequences.
arXiv Detail & Related papers (2024-10-08T02:23:53Z) - Generating Human Interaction Motions in Scenes with Text Control [66.74298145999909]
We present TeSMo, a method for text-controlled scene-aware motion generation based on denoising diffusion models.
Our approach begins with pre-training a scene-agnostic text-to-motion diffusion model.
To facilitate training, we embed annotated navigation and interaction motions within scenes.
arXiv Detail & Related papers (2024-04-16T16:04:38Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANS is the most comprehensive motion-captured HSI dataset currently available.
It intricately captures whole-body human motions and part-level object dynamics.
We devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length.
arXiv Detail & Related papers (2024-03-13T15:45:04Z) - Controllable Human-Object Interaction Synthesis [77.56877961681462]
We propose Controllable Human-Object Interaction Synthesis (CHOIS) to generate synchronized object motion and human motion in 3D scenes.
Here, language descriptions inform style and intent, and waypoints, which can be effectively extracted from high-level planning, ground the motion in the scene.
Our module seamlessly integrates with a path planning module, enabling the generation of long-term interactions in 3D environments.
arXiv Detail & Related papers (2023-12-06T21:14:20Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - NIFTY: Neural Object Interaction Fields for Guided Human Motion
Synthesis [21.650091018774972]
We create a neural interaction field attached to a specific object, which outputs the distance to the valid interaction manifold given a human pose as input.
This interaction field guides the sampling of an object-conditioned human motion diffusion model.
We synthesize realistic motions for sitting and lifting with several objects, outperforming alternative approaches in terms of motion quality and successful action completion.
arXiv Detail & Related papers (2023-07-14T17:59:38Z) - Towards Diverse and Natural Scene-aware 3D Human Motion Synthesis [117.15586710830489]
We focus on the problem of synthesizing diverse scene-aware human motions under the guidance of target action sequences.
Based on this factorized scheme, a hierarchical framework is proposed, with each sub-module responsible for modeling one aspect.
Experiment results show that the proposed framework remarkably outperforms previous methods in terms of diversity and naturalness.
arXiv Detail & Related papers (2022-05-25T18:20:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.