NIFTY: Neural Object Interaction Fields for Guided Human Motion
Synthesis
- URL: http://arxiv.org/abs/2307.07511v1
- Date: Fri, 14 Jul 2023 17:59:38 GMT
- Title: NIFTY: Neural Object Interaction Fields for Guided Human Motion
Synthesis
- Authors: Nilesh Kulkarni, Davis Rempe, Kyle Genova, Abhijit Kundu, Justin
Johnson, David Fouhey, Leonidas Guibas
- Abstract summary: We create a neural interaction field attached to a specific object, which outputs the distance to the valid interaction manifold given a human pose as input.
This interaction field guides the sampling of an object-conditioned human motion diffusion model.
We synthesize realistic motions for sitting and lifting with several objects, outperforming alternative approaches in terms of motion quality and successful action completion.
- Score: 21.650091018774972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of generating realistic 3D motions of humans
interacting with objects in a scene. Our key idea is to create a neural
interaction field attached to a specific object, which outputs the distance to
the valid interaction manifold given a human pose as input. This interaction
field guides the sampling of an object-conditioned human motion diffusion
model, so as to encourage plausible contacts and affordance semantics. To
support interactions with scarcely available data, we propose an automated
synthetic data pipeline. For this, we seed a pre-trained motion model, which
has priors for the basics of human movement, with interaction-specific anchor
poses extracted from limited motion capture data. Using our guided diffusion
model trained on generated synthetic data, we synthesize realistic motions for
sitting and lifting with several objects, outperforming alternative approaches
in terms of motion quality and successful action completion. We call our
framework NIFTY: Neural Interaction Fields for Trajectory sYnthesis.
Related papers
- THOR: Text to Human-Object Interaction Diffusion via Relation Intervention [51.02435289160616]
We propose a novel Text-guided Human-Object Interaction diffusion model with Relation Intervention (THOR)
In each diffusion step, we initiate text-guided human and object motion and then leverage human-object relations to intervene in object motion.
We construct Text-BEHAVE, a Text2HOI dataset that seamlessly integrates textual descriptions with the currently largest publicly available 3D HOI dataset.
arXiv Detail & Related papers (2024-03-17T13:17:25Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANS is the most comprehensive motion-captured HSI dataset currently available.
It intricately captures whole-body human motions and part-level object dynamics.
We devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length.
arXiv Detail & Related papers (2024-03-13T15:45:04Z) - HOI-Diff: Text-Driven Synthesis of 3D Human-Object Interactions using Diffusion Models [42.62823339416957]
We address the problem of generating realistic 3D human-object interactions (HOIs) driven by textual prompts.
We first develop a dual-branch diffusion model (HOI-DM) to generate both human and object motions conditioned on the input text.
We also develop an affordance prediction diffusion model (APDM) to predict the contacting area between the human and object.
arXiv Detail & Related papers (2023-12-11T17:41:17Z) - Controllable Human-Object Interaction Synthesis [77.56877961681462]
We propose Controllable Human-Object Interaction Synthesis (CHOIS) to generate synchronized object motion and human motion in 3D scenes.
Here, language descriptions inform style and intent, and waypoints, which can be effectively extracted from high-level planning, ground the motion in the scene.
Our module seamlessly integrates with a path planning module, enabling the generation of long-term interactions in 3D environments.
arXiv Detail & Related papers (2023-12-06T21:14:20Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - Object Motion Guided Human Motion Synthesis [22.08240141115053]
We study the problem of full-body human motion synthesis for the manipulation of large-sized objects.
We propose Object MOtion guided human MOtion synthesis (OMOMO), a conditional diffusion framework.
We develop a novel system that captures full-body human manipulation motions by simply attaching a smartphone to the object being manipulated.
arXiv Detail & Related papers (2023-09-28T08:22:00Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object
Interactions [69.95820880360345]
We present the first framework to synthesize the full-body motion of virtual human characters with 3D objects placed within their reach.
Our system takes as input textual instructions specifying the objects and the associated intentions of the virtual characters.
We show that our synthesized full-body motions appear more realistic to the participants in more than 80% of scenarios.
arXiv Detail & Related papers (2022-12-14T23:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.