論文の概要: Evaluation of Study Plans using Partial Orders
- arxiv url: http://arxiv.org/abs/2410.03314v2
- Date: Tue, 22 Oct 2024 10:34:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 22:58:38.010512
- Title: Evaluation of Study Plans using Partial Orders
- Title(参考訳): 部分順序を用いた学習計画の評価
- Authors: Christian Rennert, Mahsa Pourbafrani, Wil van der Aalst,
- Abstract要約: 提案した進路順と実路順のずれと,期待する進路順と実路順の時間差を組み合わせて偏差を検出する(s)
本研究では,学習計画のプロセスモデルと学生のコーステイク行動を部分順序としてモデル化し,部分順序アライメントを計算する。
提案手法は, アーヘン大学における実生活データに基づいて評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In higher education, data is collected that indicate the term(s) that a course is taken and when it is passed. Often, study plans propose a suggested course order to students. Study planners can adjust these based on detected deviations between the proposed and actual order of the courses being taken. In this work, we detect deviations by combining (1) the deviation between the proposed and actual course order with (2) the temporal difference between the expected and actual course-taking term(s). Partially ordered alignments identify the deviations between the proposed and actual order. We compute a partial order alignment by modeling a study plan as a process model and a student's course-taking behavior as a partial order. Using partial orders in such use cases allows one to relax the constraints of strictly ordered traces. This makes our approach less prone to the order in which courses are offered. Further, when modeling course-taking behavior as partial orders, we propose distinguishing intended course-taking behavior from actual course-passing behavior of students by including either all terms in which a course is attempted or only the term that a course is passed, respectively. This provides more perspectives when comparing the proposed and actual course-taking behavior. The proposed deviation measuring approach is evaluated on real-life data from RWTH Aachen University.
- Abstract(参考訳): 高等教育では、講座が受講され、いつ受講されるかを示すデータが収集される。
しばしば、研究計画では、学生に提案されたコース命令を提案する。
学習プランナーは、提案されたコースと実際のコースの順序のずれを検知して、これらを調整することができる。
本研究では,(1)提案項と実コース順のずれと(2)期待項と実コーステイク項の時間差とを組み合わせることで偏差を検出する。
部分的に順序付けられたアライメントは、提案された順序と実際の順序のずれを特定する。
本研究では,学習計画のプロセスモデルと学生のコーステイク行動を部分順序としてモデル化し,部分順序アライメントを計算する。
そのようなユースケースで部分順序を使用すると、厳密に順序付けられたトレースの制約を緩和することができる。
これにより、私たちのアプローチは、コースが提供される順序に近づきにくくなります。
さらに,授業受講行動を部分順序としてモデル化する場合,授業受講行動と実際の受講行動との区別を,コース受講行動が試みられるすべての用語と,コース受講行動が通過する用語のみを含むことによって提案する。
これは提案されたコーステイク行動と実際のコーステイク行動を比較する際に、より多くの視点を提供する。
提案手法は, アーヘン大学における実生活データに基づいて評価した。
関連論文リスト
- Bidirectional Decoding: Improving Action Chunking via Closed-Loop Resampling [51.38330727868982]
双方向デコーディング(BID)は、クローズドループ操作で動作チャンキングをブリッジするテスト時間推論アルゴリズムである。
BIDは、7つのシミュレーションベンチマークと2つの実世界のタスクにまたがって、最先端の2つの生成ポリシーの性能を向上させることを示す。
論文 参考訳(メタデータ) (2024-08-30T15:39:34Z) - SimGrade: Using Code Similarity Measures for More Accurate Human Grading [5.797317782326566]
CS1講座では,不正確で矛盾のない自由応答型プログラミング問題の段階化が広く行われていることを示す。
そこで本稿では, 学生の応募を小学校の生徒に割り当てるアルゴリズムを提案し, (2) 受験者が以前同様の解を見た確率を最大化するために, 受験者を発注するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-19T23:06:23Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Selection of a representative sorting model in a preference
disaggregation setting: a review of existing procedures, new proposals, and
experimental comparison [4.447467536572626]
複数の基準のソートという文脈における選好の不合理性について考察する。
間接選好に適合するソートモデルの多重性を考えると、1つの代表モデルを選択すると、異なる方法でソートを行うことができる。
本稿では,厳密な代入規則を実践する3つの新しい手順を提案する。
論文 参考訳(メタデータ) (2022-08-30T02:01:35Z) - Modeling and Correcting Bias in Sequential Evaluation [10.852140754372193]
逐次評価の問題は、評価者が連続して候補者を観察し、これらの候補者にオンラインで不可解な方法でスコアを割り当てることである。
このような環境下での逐次バイアスを研究してきた心理学文献に触発され,評価者の評価過程の自然なモデルを提案する。
クラウドソーシング実験を行い、モデルの様々な側面を実証する。
論文 参考訳(メタデータ) (2022-05-03T16:38:13Z) - Fine-grained Temporal Contrastive Learning for Weakly-supervised
Temporal Action Localization [87.47977407022492]
本稿では,シーケンス・ツー・シーケンスの区別を文脈的に比較することで学習が,弱い教師付き行動の局所化に不可欠な帰納的バイアスをもたらすことを論じる。
微分可能な動的プログラミングの定式化の下では、FSD(Fen-fine Sequence Distance)とLCS(Longest Common Subsequence)の2つの相補的コントラストが設計されている。
提案手法は,2つのベンチマークにおいて最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-03-31T05:13:50Z) - Relieving Long-tailed Instance Segmentation via Pairwise Class Balance [85.53585498649252]
長い尾のインスタンスセグメンテーションは、クラス間のトレーニングサンプルの極端な不均衡のために難しいタスクである。
尾のついたものに対して、(大多数のサンプルを含む)ヘッドクラスの深刻なバイアスを引き起こす。
そこで本研究では,学習中の予測嗜好を蓄積するために,学習中に更新される混乱行列上に構築された新しいPairwise Class Balance(PCB)手法を提案する。
論文 参考訳(メタデータ) (2022-01-08T07:48:36Z) - Leveraging Time Irreversibility with Order-Contrastive Pre-training [3.1848820580333737]
時系列データに基づく自己教師付き事前学習のための「順序コントラスト」手法について検討する。
本研究では,順序コントラスト事前学習で学習した表現の下流誤差に対する有限サンプル保証を証明した。
この結果から,特定の分布クラスや下流タスクのために設計された事前学習手法が,自己指導型学習の性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2021-11-04T02:56:52Z) - $k$-Neighbor Based Curriculum Sampling for Sequence Prediction [22.631763991832862]
言語モデルにおける多段階予測は、トレーニングとテスト時間プロセスの相違により困難である。
教師方針を段階的に変更するカリキュラム学習に基づく手法であるtextitNearest-Neighbor Replacement Samplingを提案する。
本研究では, 2つの言語モデリングベンチマークについて報告し, スケジュールされたサンプリングと併用することで, 性能をさらに向上させる方法を提案する。
論文 参考訳(メタデータ) (2021-01-22T20:07:29Z) - Bottom-Up Temporal Action Localization with Mutual Regularization [107.39785866001868]
TALの最先端の解決策は、3つの行動指示相のフレームレベルの確率を評価することである。
学習手順を相互に規則化するための2つの規則化用語を導入する。
実験は2つの人気のTALデータセット、THUMOS14とActivityNet1.3で行われている。
論文 参考訳(メタデータ) (2020-02-18T03:59:13Z) - Hierarchical Variational Imitation Learning of Control Programs [131.7671843857375]
パラメータ化された階層的手順(PHP)で表される制御ポリシーの模倣学習のための変分推論手法を提案する。
本手法は, 教師による実演の観察・行動トレースのデータセットにおける階層構造を, 手続き呼び出しや用語の待ち行列に近似した後続分布を学習することによって発見する。
階層的模倣学習(hierarchical mimicion learning)の文脈における変分推論の新たな利点を実証する。
論文 参考訳(メタデータ) (2019-12-29T08:57:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。