論文の概要: Audio-Agent: Leveraging LLMs For Audio Generation, Editing and Composition
- arxiv url: http://arxiv.org/abs/2410.03335v1
- Date: Fri, 4 Oct 2024 11:40:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 22:58:37.980928
- Title: Audio-Agent: Leveraging LLMs For Audio Generation, Editing and Composition
- Title(参考訳): Audio-Agent: オーディオ生成、編集、合成にLLMを活用する
- Authors: Zixuan Wang, Yu-Wing Tai, Chi-Keung Tang,
- Abstract要約: 本稿では,テキストやビデオの入力に基づく音声生成,編集,合成のためのフレームワークであるAudio-Agentを紹介する。
VTA(Video-to-audio)タスクでは、既存のほとんどの手法では、ビデオイベントと生成されたオーディオを同期させるタイムスタンプ検出器のトレーニングが必要である。
- 参考スコア(独自算出の注目度): 72.22243595269389
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Audio-Agent, a multimodal framework for audio generation, editing and composition based on text or video inputs. Conventional approaches for text-to-audio (TTA) tasks often make single-pass inferences from text descriptions. While straightforward, this design struggles to produce high-quality audio when given complex text conditions. In our method, we utilize a pre-trained TTA diffusion network as the audio generation agent to work in tandem with GPT-4, which decomposes the text condition into atomic, specific instructions, and calls the agent for audio generation. Consequently, Audio-Agent generates high-quality audio that is closely aligned with the provided text or video while also supporting variable-length generation. For video-to-audio (VTA) tasks, most existing methods require training a timestamp detector to synchronize video events with generated audio, a process that can be tedious and time-consuming. We propose a simpler approach by fine-tuning a pre-trained Large Language Model (LLM), e.g., Gemma2-2B-it, to obtain both semantic and temporal conditions to bridge video and audio modality. Thus our framework provides a comprehensive solution for both TTA and VTA tasks without substantial computational overhead in training.
- Abstract(参考訳): 本稿では,テキストやビデオの入力に基づく音声生成,編集,合成のためのマルチモーダルフレームワークであるAudio-Agentを紹介する。
従来のTTA(text-to-audio)タスクのアプローチは、テキスト記述からシングルパス推論を行うことが多い。
しかし、このデザインは複雑なテキスト条件が与えられた場合、高品質なオーディオを作り出すのに苦労している。
本手法では,事前学習したTTA拡散ネットワークを音声生成エージェントとして利用し,テキスト条件をアトミックな特定の命令に分解し,音声生成のためにエージェントを呼び出す。
その結果、Audio-Agentは、提供されたテキストやビデオと密に一致した高品質なオーディオを生成し、可変長生成もサポートする。
VTA(Video-to-audio)タスクでは、既存のほとんどの手法では、ビデオイベントと生成されたオーディオを同期させるタイムスタンプ検出器をトレーニングする必要がある。
本稿では,事前学習したLarge Language Model(LLM),例えばGemma2-2B-itを微調整して,ビデオとオーディオのモダリティをブリッジする意味的条件と時間的条件の両方を得る,というシンプルなアプローチを提案する。
したがって、我々のフレームワークは、トレーニングにおいてかなりの計算オーバーヘッドを伴わずに、TTAタスクとVTAタスクの両方に包括的なソリューションを提供する。
関連論文リスト
- Tell What You Hear From What You See -- Video to Audio Generation Through Text [17.95017332858846]
VATTは、ビデオとオプションのテキストプロンプトを入力として取り、オーディオとオプションのテキスト記述を生成するマルチモーダル生成フレームワークである。
VATTは、音声キャプションを通じてビデオのテキストプロンプトを推奨するだけでなく、テキストによる制御可能なビデオ音声生成を可能にする。
論文 参考訳(メタデータ) (2024-11-08T16:29:07Z) - C3LLM: Conditional Multimodal Content Generation Using Large Language Models [66.11184017840688]
C3LLMは,ビデオ・トゥ・オーディオ,音声・テキスト,テキスト・トゥ・オーディオの3つのタスクを組み合わせた新しいフレームワークである。
C3LLMはLarge Language Model (LLM) 構造を異なるモダリティを整列するためのブリッジとして適合させる。
本手法は,従来の音声理解,ビデオ音声生成,テキスト音声生成のタスクを1つの統一モデルに統合する。
論文 参考訳(メタデータ) (2024-05-25T09:10:12Z) - Text-to-Audio Generation Synchronized with Videos [44.848393652233796]
我々は,T2AV-Benchというビデオと連携したテキスト・ツー・オーディオ生成のための画期的なベンチマークを提案する。
また,ビデオアライメントTTA生成モデル,すなわちT2AVを提案する。
ビデオデータから時間的ニュアンスを抽出し、理解するために、時間的マルチヘッドアテンショントランスフォーマーを使用します。
論文 参考訳(メタデータ) (2024-03-08T22:27:38Z) - Retrieval-Augmented Text-to-Audio Generation [36.328134891428085]
本稿では,AudioLDMのような最先端モデルが,その世代性能に偏っていることを示す。
本稿では,TTAモデルに対する単純な検索拡張手法を提案する。
Re-AudioLDMは、複雑なシーン、稀なオーディオクラス、さらには目に見えないオーディオタイプに対して、現実的なオーディオを生成することができる。
論文 参考訳(メタデータ) (2023-09-14T22:35:39Z) - Large-scale unsupervised audio pre-training for video-to-speech
synthesis [64.86087257004883]
音声合成は、話者の無声映像から音声信号を再構成する作業である。
本稿では,24kHzで3,500時間以上のオーディオデータをエンコーダ・デコーダモデルでトレーニングすることを提案する。
次に、事前学習したデコーダを用いて、音声合成タスクの音声デコーダを初期化する。
論文 参考訳(メタデータ) (2023-06-27T13:31:33Z) - Exploring the Role of Audio in Video Captioning [59.679122191706426]
本稿では,キャプションの音響モダリティの可能性をフル活用することを目的とした音声視覚フレームワークを提案する。
本稿では,音声とビデオ間の情報交換を改善するため,新たなローカル・グローバル融合機構を提案する。
論文 参考訳(メタデータ) (2023-06-21T20:54:52Z) - CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained
Language-Vision Models [50.42886595228255]
本稿では,橋梁としての視覚的モダリティを活用して,所望のテキスト・オーディオ対応を学習することを提案する。
我々は、事前訓練されたコントラスト言語画像事前学習モデルによって符号化されたビデオフレームを考慮し、条件付き拡散モデルを用いてビデオの音声トラックを生成する。
論文 参考訳(メタデータ) (2023-06-16T05:42:01Z) - AudioLDM: Text-to-Audio Generation with Latent Diffusion Models [35.703877904270726]
テキスト音声合成システムTTA(Text-to-audio)が最近注目されている。
本研究では,音声空間上に構築されたTTAシステムであるAudioLDMを提案する。
単一のGPUでAudioCapsでトレーニングされたAudioLDMは、客観的メトリクスと主観的メトリクスの両方で測定された最先端のTTAパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-01-29T17:48:17Z) - AudioGen: Textually Guided Audio Generation [116.57006301417306]
記述文キャプションに条件付き音声サンプルを生成する問題に対処する。
本研究では,テキスト入力に条件付き音声サンプルを生成する自動回帰モデルであるAaudioGenを提案する。
論文 参考訳(メタデータ) (2022-09-30T10:17:05Z) - Self-Supervised Audio-and-Text Pre-training with Extremely Low-Resource
Parallel Data [15.658471125219224]
音声とテキストのマルチモーダル事前学習は有効であることが証明され、ダウンストリーム音声理解タスクの性能が大幅に向上した。
しかし、これらの最先端の訓練済みオーディオテキストモデルは、大量の並列オーディオとテキストデータを提供する場合にのみ、うまく機能する。
本稿では,低リソース並列データを用いた音声テキストモデルの事前学習が可能かどうかを検討する。
論文 参考訳(メタデータ) (2022-04-10T10:25:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。