Audio-Agent: Leveraging LLMs For Audio Generation, Editing and Composition
- URL: http://arxiv.org/abs/2410.03335v1
- Date: Fri, 4 Oct 2024 11:40:53 GMT
- Title: Audio-Agent: Leveraging LLMs For Audio Generation, Editing and Composition
- Authors: Zixuan Wang, Yu-Wing Tai, Chi-Keung Tang,
- Abstract summary: We introduce Audio-Agent, a framework for audio generation, editing and composition based on text or video inputs.
For video-to-audio (VTA) tasks, most existing methods require training a timestamp detector to synchronize video events with generated audio.
- Score: 72.22243595269389
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Audio-Agent, a multimodal framework for audio generation, editing and composition based on text or video inputs. Conventional approaches for text-to-audio (TTA) tasks often make single-pass inferences from text descriptions. While straightforward, this design struggles to produce high-quality audio when given complex text conditions. In our method, we utilize a pre-trained TTA diffusion network as the audio generation agent to work in tandem with GPT-4, which decomposes the text condition into atomic, specific instructions, and calls the agent for audio generation. Consequently, Audio-Agent generates high-quality audio that is closely aligned with the provided text or video while also supporting variable-length generation. For video-to-audio (VTA) tasks, most existing methods require training a timestamp detector to synchronize video events with generated audio, a process that can be tedious and time-consuming. We propose a simpler approach by fine-tuning a pre-trained Large Language Model (LLM), e.g., Gemma2-2B-it, to obtain both semantic and temporal conditions to bridge video and audio modality. Thus our framework provides a comprehensive solution for both TTA and VTA tasks without substantial computational overhead in training.
Related papers
- MINT: a Multi-modal Image and Narrative Text Dubbing Dataset for Foley Audio Content Planning and Generation [43.35578187209748]
Foley audio faces significant challenges in the AI-generated content (AIGC) landscape.
Current text-to-audio technology relies on detailed and acoustically relevant textual descriptions.
We introduce the Multi-modal Image and Narrative Text Dubbing dataset (MINT)
MINT is designed to enhance mainstream dubbing tasks such as literary story audiobooks dubbing, image/silent video dubbing.
arXiv Detail & Related papers (2024-06-15T10:47:36Z) - C3LLM: Conditional Multimodal Content Generation Using Large Language Models [66.11184017840688]
We introduce C3LLM, a novel framework combining three tasks of video-to-audio, audio-to-text, and text-to-audio together.
C3LLM adapts the Large Language Model (LLM) structure as a bridge for aligning different modalities.
Our method combines the previous tasks of audio understanding, video-to-audio generation, and text-to-audio generation together into one unified model.
arXiv Detail & Related papers (2024-05-25T09:10:12Z) - Text-to-Audio Generation Synchronized with Videos [44.848393652233796]
We introduce a groundbreaking benchmark for Text-to-Audio generation that aligns with Videos, named T2AV-Bench.
We also present a simple yet effective video-aligned TTA generation model, namely T2AV.
It employs a temporal multi-head attention transformer to extract and understand temporal nuances from video data, a feat amplified by our Audio-Visual ControlNet.
arXiv Detail & Related papers (2024-03-08T22:27:38Z) - Retrieval-Augmented Text-to-Audio Generation [36.328134891428085]
We show that the state-of-the-art models, such as AudioLDM, are biased in their generation performance.
We propose a simple retrieval-augmented approach for TTA models.
We show that Re-AudioLDM can generate realistic audio for complex scenes, rare audio classes, and even unseen audio types.
arXiv Detail & Related papers (2023-09-14T22:35:39Z) - Large-scale unsupervised audio pre-training for video-to-speech
synthesis [64.86087257004883]
Video-to-speech synthesis is the task of reconstructing the speech signal from a silent video of a speaker.
In this paper we propose to train encoder-decoder models on more than 3,500 hours of audio data at 24kHz.
We then use the pre-trained decoders to initialize the audio decoders for the video-to-speech synthesis task.
arXiv Detail & Related papers (2023-06-27T13:31:33Z) - Exploring the Role of Audio in Video Captioning [59.679122191706426]
We present an audio-visual framework, which aims to fully exploit the potential of the audio modality for captioning.
We propose new local-global fusion mechanisms to improve information exchange across audio and video.
arXiv Detail & Related papers (2023-06-21T20:54:52Z) - CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained
Language-Vision Models [50.42886595228255]
We propose to learn the desired text-audio correspondence by leveraging the visual modality as a bridge.
We train a conditional diffusion model to generate the audio track of a video, given a video frame encoded by a pretrained contrastive language-image pretraining model.
arXiv Detail & Related papers (2023-06-16T05:42:01Z) - AudioLDM: Text-to-Audio Generation with Latent Diffusion Models [35.703877904270726]
Text-to-audio (TTA) system has recently gained attention for its ability to synthesize general audio based on text descriptions.
In this study, we propose AudioLDM, a TTA system that is built on a latent space to learn the continuous audio representations from contrastive language-audio pretraining latents.
Trained on AudioCaps with a single GPU, AudioLDM achieves state-of-the-art TTA performance measured by both objective and subjective metrics.
arXiv Detail & Related papers (2023-01-29T17:48:17Z) - AudioGen: Textually Guided Audio Generation [116.57006301417306]
We tackle the problem of generating audio samples conditioned on descriptive text captions.
In this work, we propose AaudioGen, an auto-regressive model that generates audio samples conditioned on text inputs.
arXiv Detail & Related papers (2022-09-30T10:17:05Z) - Self-Supervised Audio-and-Text Pre-training with Extremely Low-Resource
Parallel Data [15.658471125219224]
Multimodal pre-training for audio-and-text has been proven to be effective and has significantly improved the performance of many downstream speech understanding tasks.
However, these state-of-the-art pre-training audio-text models work well only when provided with large amount of parallel audio-and-text data.
In this paper, we investigate whether it is possible to pre-train an audio-text model with low-resource parallel data.
arXiv Detail & Related papers (2022-04-10T10:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.