VinTAGe: Joint Video and Text Conditioning for Holistic Audio Generation
- URL: http://arxiv.org/abs/2412.10768v1
- Date: Sat, 14 Dec 2024 09:36:10 GMT
- Title: VinTAGe: Joint Video and Text Conditioning for Holistic Audio Generation
- Authors: Saksham Singh Kushwaha, Yapeng Tian,
- Abstract summary: We introduce VinTAGe, a flow-based transformer model that jointly considers text and video to guide audio generation.
Our framework comprises two key components: a Visual-Text and a Joint VT-SiT model.
Due to the lack of appropriate benchmarks, we also introduce VinTAGe-Bench, a dataset of 636 video-text-audio pairs containing both onscreen and offscreen sounds.
- Score: 27.9571263633586
- License:
- Abstract: Recent advances in audio generation have focused on text-to-audio (T2A) and video-to-audio (V2A) tasks. However, T2A or V2A methods cannot generate holistic sounds (onscreen and off-screen). This is because T2A cannot generate sounds aligning with onscreen objects, while V2A cannot generate semantically complete (offscreen sounds missing). In this work, we address the task of holistic audio generation: given a video and a text prompt, we aim to generate both onscreen and offscreen sounds that are temporally synchronized with the video and semantically aligned with text and video. Previous approaches for joint text and video-to-audio generation often suffer from modality bias, favoring one modality over the other. To overcome this limitation, we introduce VinTAGe, a flow-based transformer model that jointly considers text and video to guide audio generation. Our framework comprises two key components: a Visual-Text Encoder and a Joint VT-SiT model. To reduce modality bias and improve generation quality, we employ pretrained uni-modal text-to-audio and video-to-audio generation models for additional guidance. Due to the lack of appropriate benchmarks, we also introduce VinTAGe-Bench, a dataset of 636 video-text-audio pairs containing both onscreen and offscreen sounds. Our comprehensive experiments on VinTAGe-Bench demonstrate that joint text and visual interaction is necessary for holistic audio generation. Furthermore, VinTAGe achieves state-of-the-art results on the VGGSound benchmark. Our source code and pre-trained models will be released. Demo is available at: https://www.youtube.com/watch?v=QmqWhUjPkJI.
Related papers
- Tell What You Hear From What You See -- Video to Audio Generation Through Text [17.95017332858846]
VATT is a multi-modal generative framework that takes a video and an optional text prompt as input, and generates audio and optional textual description of the audio.
VATT enables controllable video-to-audio generation through text as well as suggesting text prompts for videos through audio captions.
arXiv Detail & Related papers (2024-11-08T16:29:07Z) - Audio-Agent: Leveraging LLMs For Audio Generation, Editing and Composition [72.22243595269389]
We introduce Audio-Agent, a framework for audio generation, editing and composition based on text or video inputs.
In our method, we utilize a pre-trained TTA diffusion network as the audio generation agent to work in tandem with GPT-4.
For video-to-audio (VTA) tasks, most existing methods require training a timestamp detector to synchronize video events with the generated audio.
arXiv Detail & Related papers (2024-10-04T11:40:53Z) - Text-to-Audio Generation Synchronized with Videos [44.848393652233796]
We introduce a groundbreaking benchmark for Text-to-Audio generation that aligns with Videos, named T2AV-Bench.
We also present a simple yet effective video-aligned TTA generation model, namely T2AV.
It employs a temporal multi-head attention transformer to extract and understand temporal nuances from video data, a feat amplified by our Audio-Visual ControlNet.
arXiv Detail & Related papers (2024-03-08T22:27:38Z) - Diverse and Aligned Audio-to-Video Generation via Text-to-Video Model
Adaptation [89.96013329530484]
We consider the task of generating diverse and realistic videos guided by natural audio samples from a wide variety of semantic classes.
We utilize an existing text-conditioned video generation model and a pre-trained audio encoder model.
We validate our method extensively on three datasets demonstrating significant semantic diversity of audio-video samples.
arXiv Detail & Related papers (2023-09-28T13:26:26Z) - Align, Adapt and Inject: Sound-guided Unified Image Generation [50.34667929051005]
We propose a unified framework 'Align, Adapt, and Inject' (AAI) for sound-guided image generation, editing, and stylization.
Our method adapts input sound into a sound token, like an ordinary word, which can plug and play with existing Text-to-Image (T2I) models.
Our proposed AAI outperforms other text and sound-guided state-of-the-art methods.
arXiv Detail & Related papers (2023-06-20T12:50:49Z) - DiffAVA: Personalized Text-to-Audio Generation with Visual Alignment [30.38594416942543]
We propose a novel and personalized text-to-sound generation approach with visual alignment based on latent diffusion models, namely DiffAVA.
Our DiffAVA leverages a multi-head attention transformer to aggregate temporal information from video features, and a dual multi-modal residual network to fuse temporal visual representations with text embeddings.
Experimental results on the AudioCaps dataset demonstrate that the proposed DiffAVA can achieve competitive performance on visual-aligned text-to-audio generation.
arXiv Detail & Related papers (2023-05-22T10:37:27Z) - Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion
Models [65.18102159618631]
multimodal generative modeling has created milestones in text-to-image and text-to-video generation.
Its application to audio still lags behind for two main reasons: the lack of large-scale datasets with high-quality text-audio pairs, and the complexity of modeling long continuous audio data.
We propose Make-An-Audio with a prompt-enhanced diffusion model that addresses these gaps.
arXiv Detail & Related papers (2023-01-30T04:44:34Z) - AudioGen: Textually Guided Audio Generation [116.57006301417306]
We tackle the problem of generating audio samples conditioned on descriptive text captions.
In this work, we propose AaudioGen, an auto-regressive model that generates audio samples conditioned on text inputs.
arXiv Detail & Related papers (2022-09-30T10:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.