GraphCroc: Cross-Correlation Autoencoder for Graph Structural Reconstruction
- URL: http://arxiv.org/abs/2410.03396v1
- Date: Fri, 4 Oct 2024 12:59:45 GMT
- Title: GraphCroc: Cross-Correlation Autoencoder for Graph Structural Reconstruction
- Authors: Shijin Duan, Ruyi Ding, Jiaxing He, Aidong Adam Ding, Yunsi Fei, Xiaolin Xu,
- Abstract summary: Graph autoencoders (GAEs) reconstruct graph structures from node embeddings.
We introduce a cross-correlation mechanism that significantly enhances the GAE representational capabilities.
We also propose GraphCroc, a new GAE that supports flexible encoder architectures tailored for various downstream tasks.
- Score: 6.817416560637197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-structured data is integral to many applications, prompting the development of various graph representation methods. Graph autoencoders (GAEs), in particular, reconstruct graph structures from node embeddings. Current GAE models primarily utilize self-correlation to represent graph structures and focus on node-level tasks, often overlooking multi-graph scenarios. Our theoretical analysis indicates that self-correlation generally falls short in accurately representing specific graph features such as islands, symmetrical structures, and directional edges, particularly in smaller or multiple graph contexts. To address these limitations, we introduce a cross-correlation mechanism that significantly enhances the GAE representational capabilities. Additionally, we propose GraphCroc, a new GAE that supports flexible encoder architectures tailored for various downstream tasks and ensures robust structural reconstruction, through a mirrored encoding-decoding process. This model also tackles the challenge of representation bias during optimization by implementing a loss-balancing strategy. Both theoretical analysis and numerical evaluations demonstrate that our methodology significantly outperforms existing self-correlation-based GAEs in graph structure reconstruction.
Related papers
- Preserving Node Distinctness in Graph Autoencoders via Similarity Distillation [9.395697548237333]
Graph autoencoders (GAEs) rely on distance-based criteria, such as mean-square-error (MSE) to reconstruct the input graph.
relying solely on a single reconstruction criterion may lead to a loss of distinctiveness in the reconstructed graph.
We have developed a simple yet effective strategy to preserve the necessary distinctness in the reconstructed graph.
arXiv Detail & Related papers (2024-06-25T12:54:35Z) - Cross-View Graph Consistency Learning for Invariant Graph
Representations [16.007232280413806]
We propose a cross-view graph consistency learning (CGCL) method that learns invariant graph representations for link prediction.
This paper empirically and experimentally demonstrates the effectiveness of the proposed CGCL method.
arXiv Detail & Related papers (2023-11-20T14:58:47Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Graph Pooling with Maximum-Weight $k$-Independent Sets [12.251091325930837]
We introduce a graph coarsening mechanism based on the graph-theoretic concept of maximum-weight $k$-independent sets.
We prove theoretical guarantees for distortion bounds on path lengths, as well as the ability to preserve key topological properties in the coarsened graphs.
arXiv Detail & Related papers (2022-08-06T14:12:47Z) - GraphDCA -- a Framework for Node Distribution Comparison in Real and
Synthetic Graphs [72.51835626235368]
We argue that when comparing two graphs, the distribution of node structural features is more informative than global graph statistics.
We present GraphDCA - a framework for evaluating similarity between graphs based on the alignment of their respective node representation sets.
arXiv Detail & Related papers (2022-02-08T14:19:19Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Self-Constructing Graph Convolutional Networks for Semantic Labeling [23.623276007011373]
We propose a novel architecture called the Self-Constructing Graph (SCG), which makes use of learnable latent variables to generate embeddings.
SCG can automatically obtain optimized non-local context graphs from complex-shaped objects in aerial imagery.
We demonstrate the effectiveness and flexibility of the proposed SCG on the publicly available ISPRS Vaihingen dataset.
arXiv Detail & Related papers (2020-03-15T21:55:24Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z) - Deep Graph Mapper: Seeing Graphs through the Neural Lens [4.401427499962144]
We merge Mapper with the expressive power of Graph Neural Networks (GNNs) to produce hierarchical, topologically-grounded visualisations of graphs.
These visualisations do not only help discern the structure of complex graphs but also provide a means of understanding the models applied to them for solving various tasks.
arXiv Detail & Related papers (2020-02-10T15:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.