Deep Graph Mapper: Seeing Graphs through the Neural Lens
- URL: http://arxiv.org/abs/2002.03864v2
- Date: Thu, 20 Feb 2020 12:03:17 GMT
- Title: Deep Graph Mapper: Seeing Graphs through the Neural Lens
- Authors: Cristian Bodnar, C\u{a}t\u{a}lina Cangea, Pietro Li\`o
- Abstract summary: We merge Mapper with the expressive power of Graph Neural Networks (GNNs) to produce hierarchical, topologically-grounded visualisations of graphs.
These visualisations do not only help discern the structure of complex graphs but also provide a means of understanding the models applied to them for solving various tasks.
- Score: 4.401427499962144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in graph representation learning have led to the
emergence of condensed encodings that capture the main properties of a graph.
However, even though these abstract representations are powerful for downstream
tasks, they are not equally suitable for visualisation purposes. In this work,
we merge Mapper, an algorithm from the field of Topological Data Analysis
(TDA), with the expressive power of Graph Neural Networks (GNNs) to produce
hierarchical, topologically-grounded visualisations of graphs. These
visualisations do not only help discern the structure of complex graphs but
also provide a means of understanding the models applied to them for solving
various tasks. We further demonstrate the suitability of Mapper as a
topological framework for graph pooling by mathematically proving an
equivalence with Min-Cut and Diff Pool. Building upon this framework, we
introduce a novel pooling algorithm based on PageRank, which obtains
competitive results with state of the art methods on graph classification
benchmarks.
Related papers
- SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - Higher-order Clustering and Pooling for Graph Neural Networks [77.47617360812023]
Graph Neural Networks achieve state-of-the-art performance on a plethora of graph classification tasks.
HoscPool is a clustering-based graph pooling operator that captures higher-order information hierarchically.
We evaluate HoscPool on graph classification tasks and its clustering component on graphs with ground-truth community structure.
arXiv Detail & Related papers (2022-09-02T09:17:10Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical
Graph Representation Learning [74.90535111881358]
We propose a new interpretable graph pooling framework - CommPOOL.
It can capture and preserve the hierarchical community structure of graphs in the graph representation learning process.
CommPOOL is a general and flexible framework for hierarchical graph representation learning.
arXiv Detail & Related papers (2020-12-10T21:14:18Z) - Second-Order Pooling for Graph Neural Networks [62.13156203025818]
We propose to use second-order pooling as graph pooling, which naturally solves the above challenges.
We show that direct use of second-order pooling with graph neural networks leads to practical problems.
We propose two novel global graph pooling methods based on second-order pooling; namely, bilinear mapping and attentional second-order pooling.
arXiv Detail & Related papers (2020-07-20T20:52:36Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Unsupervised Hierarchical Graph Representation Learning by Mutual
Information Maximization [8.14036521415919]
We present an unsupervised graph representation learning method, Unsupervised Hierarchical Graph Representation (UHGR)
Our method focuses on maximizing mutual information between "local" and high-level "global" representations.
The results show that the proposed method achieves comparable results to state-of-the-art supervised methods on several benchmarks.
arXiv Detail & Related papers (2020-03-18T18:21:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.