論文の概要: Benchmarking the Fidelity and Utility of Synthetic Relational Data
- arxiv url: http://arxiv.org/abs/2410.03411v1
- Date: Fri, 4 Oct 2024 13:23:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 22:29:14.901983
- Title: Benchmarking the Fidelity and Utility of Synthetic Relational Data
- Title(参考訳): 合成関係データの忠実度と実用性のベンチマーク
- Authors: Valter Hudovernik, Martin Jurkovič, Erik Štrumbelj,
- Abstract要約: 我々は、関係データ合成、共通ベンチマークデータセット、および合成データの忠実性と有用性を測定するためのアプローチに関する関連研究についてレビューする。
ベストプラクティスと、新しい堅牢な検出アプローチをベンチマークツールに組み合わせて、6つのメソッドを比較します。
実用面では、モデル予測性能と特徴量の両方において、実データと合成データの適度な相関が観察されるのが一般的である。
- 参考スコア(独自算出の注目度): 1.024113475677323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthesizing relational data has started to receive more attention from researchers, practitioners, and industry. The task is more difficult than synthesizing a single table due to the added complexity of relationships between tables. For the same reason, benchmarking methods for synthesizing relational data introduces new challenges. Our work is motivated by a lack of an empirical evaluation of state-of-the-art methods and by gaps in the understanding of how such an evaluation should be done. We review related work on relational data synthesis, common benchmarking datasets, and approaches to measuring the fidelity and utility of synthetic data. We combine the best practices and a novel robust detection approach into a benchmarking tool and use it to compare six methods, including two commercial tools. While some methods are better than others, no method is able to synthesize a dataset that is indistinguishable from original data. For utility, we typically observe moderate correlation between real and synthetic data for both model predictive performance and feature importance.
- Abstract(参考訳): リレーショナルデータの合成は、研究者、実践者、業界からより多くの注目を集め始めています。
このタスクは、テーブル間の関係が複雑になるため、単一のテーブルを合成するよりも難しい。
同じ理由から、リレーショナルデータを合成するためのベンチマーク手法は、新しい課題をもたらす。
我々の研究は、最先端の手法の実証的な評価の欠如と、そのような評価をどのように行うべきかの理解のギャップによって動機付けられている。
我々は、関係データ合成、共通ベンチマークデータセット、および合成データの忠実性と有用性を測定するためのアプローチに関する関連研究についてレビューする。
ベストプラクティスと新しい堅牢な検出アプローチをベンチマークツールに組み合わせ、それを2つの商用ツールを含む6つの方法の比較に使用します。
一部のメソッドは他のメソッドよりも優れているが、元のデータと区別できないデータセットを合成する手段はない。
実用面では、モデル予測性能と特徴量の両方において、実データと合成データの適度な相関が観察されるのが一般的である。
関連論文リスト
- Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - SynthEval: A Framework for Detailed Utility and Privacy Evaluation of Tabular Synthetic Data [3.360001542033098]
SynthEvalは、合成データのための新しいオープンソース評価フレームワークである。
特別な種類の前処理ステップを仮定することなく、分類的および数値的な属性を同等のケアで扱う。
我々のツールは統計的および機械学習技術を利用して、合成データの忠実度とプライバシー保護の整合性を包括的に評価する。
論文 参考訳(メタデータ) (2024-04-24T11:49:09Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
※データ合成*はラベル付きデータの少ない小さなモデルをトレーニングするための有望な方法です。
本稿では,この分散ギャップを縮めるデータ合成フレームワークであるStep* (**S3**) による合成ステップを提案する。
提案手法は,合成データセットと実データとのギャップを小さくすることで,小型モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-10-20T17:14:25Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - Utility Theory of Synthetic Data Generation [12.511220449652384]
本稿では,統計的学習フレームワークにおける実用理論の確立により,実践と理論のギャップを埋める。
合成データに基づいてトレーニングされたモデルの一般化とランキングの2つのユーティリティメトリクスを考慮に入れている。
論文 参考訳(メタデータ) (2023-05-17T07:49:16Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Generating Realistic Synthetic Relational Data through Graph Variational
Autoencoders [47.89542334125886]
変動型オートエンコーダフレームワークとグラフニューラルネットワークを組み合わせることで,リアルな合成関係データベースを生成する。
結果は、実際のデータベースの構造が結果の合成データセットに正確に保存されていることを示している。
論文 参考訳(メタデータ) (2022-11-30T10:40:44Z) - TabSynDex: A Universal Metric for Robust Evaluation of Synthetic Tabular Data [14.900342838726747]
合成データのロバストな評価のための新しい普遍計量TabSynDexを提案する。
シングルスコアメトリックであるTabSynDexは、ニューラルネットワークベースのアプローチのトレーニングを観察および評価するためにも使用できる。
論文 参考訳(メタデータ) (2022-07-12T04:08:11Z) - Synthetic Benchmarks for Scientific Research in Explainable Machine
Learning [14.172740234933215]
我々はXAI-Benchをリリースした。XAI-Benchは、合成データセットと、特徴属性アルゴリズムをベンチマークするためのライブラリである。
実世界のデータセットとは異なり、合成データセットは条件付き期待値の効率的な計算を可能にする。
いくつかの評価指標にまたがって一般的な説明可能性手法をベンチマークし、一般的な説明者にとっての障害モードを特定することで、ライブラリのパワーを実証する。
論文 参考訳(メタデータ) (2021-06-23T17:10:21Z) - Foundations of Bayesian Learning from Synthetic Data [1.6249267147413522]
我々はベイズパラダイムを用いて、合成データから学習する際のモデルパラメータの更新を特徴付ける。
ベイジアン・アップデートの最近の成果は、決定理論に基づく新しい、堅牢な合成学習のアプローチを支持している。
論文 参考訳(メタデータ) (2020-11-16T21:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。