論文の概要: Approaching Code Search for Python as a Translation Retrieval Problem with Dual Encoders
- arxiv url: http://arxiv.org/abs/2410.03431v2
- Date: Thu, 24 Oct 2024 13:11:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 22:19:23.269275
- Title: Approaching Code Search for Python as a Translation Retrieval Problem with Dual Encoders
- Title(参考訳): デュアルエンコーダを用いた翻訳検索問題としてのPythonのコード検索
- Authors: Monoshiz Mahbub Khan, Zhe Yu,
- Abstract要約: この研究は、Pythonのコード検索を翻訳検索問題としてアプローチする。
デュアルエンコーダを使用することで、これらの2種類の言語シーケンスを共有埋め込み空間に投影する。
統一言語モデルは、アーティファクト間の単語のかなりの重複をモデルが活用するのに役立つ。
- 参考スコア(独自算出の注目度): 4.106941784309168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code search is vital in the maintenance and extension of software systems. Past works have used separate language models for the natural language and programming language artifacts on models with multiple encoders and different loss functions. Similarly, this work approaches code search for Python as a translation retrieval problem while the natural language queries and the programming language are treated as two types of languages. By using dual encoders, these two types of language sequences are projected onto a shared embedding space, in which the distance reflects the similarity between a given pair of query and code. However, in contrast to previous work, this approach uses a unified language model, and a dual encoder structure with a cosine similarity loss function. A unified language model helps the model take advantage of the considerable overlap of words between the artifacts, making the learning much easier. On the other hand, the dual encoders trained with cosine similarity loss helps the model learn the underlining patterns of which terms are important for predicting linked pairs of artifacts. Evaluation shows the proposed model achieves performance better than state-of-the-art code search models. In addition, this model is much less expensive in terms of time and complexity, offering a cheaper, faster, and better alternative.
- Abstract(参考訳): コード検索はソフトウェアシステムの保守と拡張に不可欠である。
過去の研究では、複数のエンコーダと異なる損失関数を持つモデル上で、自然言語とプログラミング言語のアーティファクトに別々の言語モデルを使用してきた。
同様に、自然言語クエリとプログラミング言語が2種類の言語として扱われる間、翻訳検索問題としてPythonのコード検索にアプローチする。
デュアルエンコーダを使用することで、これらの2種類の言語シーケンスは、与えられたクエリとコード間の類似性を反映した、共有埋め込み空間に投影される。
しかし、従来の研究とは対照的に、この手法は統一言語モデルとコサイン類似性損失関数を持つ二重エンコーダ構造を用いる。
統一言語モデルは、アーティファクト間の単語の相当な重複をモデルが活用し、学習をより容易にするのに役立つ。
一方、コサイン類似性損失で訓練されたデュアルエンコーダは、関係するアーティファクトのペアを予測する上で、どの用語が重要であるかという下線パターンをモデルが学習するのに役立つ。
評価の結果,提案モデルは最先端のコード検索モデルよりも性能がよいことがわかった。
さらに、このモデルは時間と複雑さの点ではるかに安価で、より安く、より速く、より良い代替手段を提供する。
関連論文リスト
- Rethinking Code Refinement: Learning to Judge Code Efficiency [60.04718679054704]
大規模言語モデル(LLM)は、コードを理解して生成する素晴らしい能力を示しています。
本稿では,2つの異なる符号間の効率を判定するために訓練されたコード言語モデルに基づく新しい手法を提案する。
提案手法は,複数の改良ステップで複数のプログラミング言語に対して検証し,より効率的で少ないバージョンのコードの識別を効果的に行うことができることを示した。
論文 参考訳(メタデータ) (2024-10-29T06:17:37Z) - CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution [50.7413285637879]
CRUXEVAL-Xコード推論ベンチマークには19のプログラミング言語が含まれている。
各言語に対して少なくとも600人の被験者で構成され、合計19Kのコンテンツ一貫性テストがある。
Pythonでのみトレーニングされたモデルでさえ、他の言語で34.4%のPass@1を達成することができる。
論文 参考訳(メタデータ) (2024-08-23T11:43:00Z) - Adapting Dual-encoder Vision-language Models for Paraphrased Retrieval [55.90407811819347]
モデルが類似した結果を返すことを目的とした,パラフレーズ付きテキスト画像検索の課題について考察する。
我々は、大きなテキストコーパスで事前訓練された言語モデルから始まる二重エンコーダモデルを訓練する。
CLIPやOpenCLIPのような公開デュアルエンコーダモデルと比較して、最高の適応戦略で訓練されたモデルは、パラフレーズクエリのランク付けの類似性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-05-06T06:30:17Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
本稿では,大規模なソースコードプロジェクトの理解と維持を支援するファイルレベルのコード要約について検討する。
長いコードシーケンスを効果的に処理するための識別子対応スパース変換器であるSparseCoderを提案する。
論文 参考訳(メタデータ) (2024-01-26T09:23:27Z) - Can Large Language Models Write Parallel Code? [0.5317767988097261]
大規模言語モデルは、ソフトウェア開発の一般的なツールになりつつある。
本稿では,最先端言語モデルによる並列コード生成能力について検討する。
論文 参考訳(メタデータ) (2024-01-23T08:25:12Z) - Multi-lingual Evaluation of Code Generation Models [82.7357812992118]
本稿では,MBXPとMultilingual HumanEval,MathQA-Xという,評価コード生成モデルに関する新しいベンチマークを提案する。
これらのデータセットは10以上のプログラミング言語をカバーする。
コード生成モデルの性能を多言語で評価することができる。
論文 参考訳(メタデータ) (2022-10-26T17:17:06Z) - Learning Deep Semantic Model for Code Search using CodeSearchNet Corpus [17.6095840480926]
マルチモーダル・ソースのユーティリティを利用する新しいディープ・セマンティック・モデルを提案する。
提案したモデルを適用して,意味的コード検索に関するCodeSearchNetの課題に対処する。
我々のモデルはCodeSearchNetコーパスでトレーニングされ、ホールドアウトデータに基づいて評価され、最終モデルは0.384 NDCGに達し、このベンチマークで優勝した。
論文 参考訳(メタデータ) (2022-01-27T04:15:59Z) - Breaking Down Multilingual Machine Translation [74.24795388967907]
マルチ言語学習は一般にエンコーダにとって有益であるが,ローソース言語(LRL)ではデコーダにのみ有益であることを示す。
LRLの多言語モデルと一対多モデルは、Aharoniらによって報告された最良の結果よりも優れています。
論文 参考訳(メタデータ) (2021-10-15T14:57:12Z) - BERT2Code: Can Pretrained Language Models be Leveraged for Code Search? [0.7953229555481884]
我々は,本モデルが埋め込み空間と改良のスコープに対するさらなるプローブの間に固有の関係を学習することを示す。
本稿では,コード埋め込みモデルの品質が,我々のモデルの性能のボトルネックであることを示す。
論文 参考訳(メタデータ) (2021-04-16T10:28:27Z) - Automated Source Code Generation and Auto-completion Using Deep
Learning: Comparing and Discussing Current Language-Model-Related Approaches [0.0]
本稿では、異なるディープラーニングアーキテクチャを比較して、プログラミングコードに基づく言語モデルを作成し、使用する。
それぞれのアプローチのさまざまな長所と短所と、言語モデルを評価したり、実際のプログラミングコンテキストでそれらを適用するためのギャップについて論じる。
論文 参考訳(メタデータ) (2020-09-16T15:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。