論文の概要: ToolGen: Unified Tool Retrieval and Calling via Generation
- arxiv url: http://arxiv.org/abs/2410.03439v1
- Date: Tue, 8 Oct 2024 06:54:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 22:19:23.246839
- Title: ToolGen: Unified Tool Retrieval and Calling via Generation
- Title(参考訳): ToolGen: 生成による統一されたツール検索と呼び出し
- Authors: Renxi Wang, Xudong Han, Lei Ji, Shu Wang, Timothy Baldwin, Haonan Li,
- Abstract要約: ToolGenは、ツール知識を大きな言語モデルのパラメータに直接統合するパラダイムシフトです。
ToolGenは、ツール検索と自律タスク補完の両方において、優れた結果が得られることを示す。
ToolGenは、より汎用的で効率的で自律的なAIシステムを実現する。
- 参考スコア(独自算出の注目度): 34.34787641393914
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As large language models (LLMs) advance, their inability to autonomously execute tasks by directly interacting with external tools remains a critical limitation. Traditional methods rely on inputting tool descriptions as context, which is constrained by context length and requires separate, often inefficient, retrieval mechanisms. We introduce ToolGen, a paradigm shift that integrates tool knowledge directly into the LLM's parameters by representing each tool as a unique token. This enables the LLM to generate tool calls and arguments as part of its next token prediction capabilities, seamlessly blending tool invocation with language generation. Our framework allows the LLM to access and utilize a vast amount of tools with no additional retrieval step, significantly enhancing both performance and scalability. Experimental results with over 47,000 tools show that ToolGen not only achieves superior results in both tool retrieval and autonomous task completion but also sets the stage for a new era of AI agents that can adapt to tools across diverse domains. By fundamentally transforming tool retrieval into a generative process, ToolGen paves the way for more versatile, efficient, and autonomous AI systems. ToolGen enables end-to-end tool learning and opens opportunities for integration with other advanced techniques such as chain-of-thought and reinforcement learning, thereby expanding the practical capabilities of LLMs.
- Abstract(参考訳): 大きな言語モデル(LLM)が進歩するにつれて、外部ツールと直接対話することでタスクを自律的に実行できないことは、依然として重要な制限である。
従来の手法では、コンテキスト長に制約されたツール記述をコンテキストとして入力することに依存しており、分離され、しばしば非効率な検索機構を必要とする。
ツール知識を LLM のパラメータに直接統合するパラダイムシフトである ToolGen を紹介し,それぞれのツールをユニークなトークンとして表現する。
これにより、LLMは次のトークン予測機能の一部としてツール呼び出しと引数を生成し、ツール呼び出しと言語生成をシームレスにブレンドすることができる。
我々のフレームワークは、LLMが追加の検索手順なしで大量のツールにアクセスし、利用できるようにし、性能とスケーラビリティの両方を大幅に向上させる。
47,000以上のツールによる実験結果から、ToolGenはツール検索と自律的なタスク完了の両方において優れた結果を達成するだけでなく、さまざまな領域にまたがるツールに適応できるAIエージェントの新たな時代へのステージも設定している。
ツール検索を生成プロセスに根本的に変換することで、ToolGenはより汎用的で効率的で自律的なAIシステムを実現する。
ToolGenは、エンドツーエンドのツール学習を可能にし、チェーン・オブ・ソートや強化学習といった他の高度な技術との統合の機会を開放し、LCMの実用的な能力を拡大します。
関連論文リスト
- MetaTool: Facilitating Large Language Models to Master Tools with Meta-task Augmentation [25.360660222418183]
再利用可能なツールセットにまたがって一般化するために設計された,新しいツール学習手法であるMetaToolを紹介する。
メタタスクデータをタスク指向トレーニングに組み込むことで,オープンソースの大規模言語モデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-15T10:15:41Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
現実世界のシステムは多種多様なツールを組み込んでおり、全てのツールを大規模言語モデルに入力することは不可能である。
既存のツール検索手法は主にユーザクエリとツール記述間のセマンティックマッチングに焦点を当てている。
我々は,ユーザクエリとツール記述のセマンティックな類似性だけでなく,ツールの協調的情報も考慮した,新しいモデル診断型協調学習型ツール検索手法であるCOLTを提案する。
論文 参考訳(メタデータ) (2024-05-25T06:41:23Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
既存の大規模言語モデル(LLM)は30%から60%の範囲でしか正当性に至らない。
試行錯誤(STE)を模擬したツール拡張LDMの生物学的なインスピレーション法を提案する。
STEは、試行錯誤、想像力、記憶という、生物学的システムにおけるツール使用行動の成功のための3つの重要なメカニズムを編成する。
論文 参考訳(メタデータ) (2024-03-07T18:50:51Z) - ToolNet: Connecting Large Language Models with Massive Tools via Tool
Graph [43.95759808077083]
既存のテキスト内学習アプローチは、ツールを単純なテキスト記述のリストにフォーマットし、大きな言語モデルに入力する。
本稿では,トークン消費を適度に増加させ,ツールの数を数千にスケールアップするプラグイン・アンド・プレイ・フレームワークであるToolNetを提案する。
論文 参考訳(メタデータ) (2024-02-29T02:04:00Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
意思決定・汎用ツール・ユース・フレームワーク(DEER)を提案する。
具体的には、まず、自動生成パイプラインを介して、複数の決定ブランチを持つツール使用サンプルを構築します。
提案するDEERは, 各種データセットのベースラインよりも効果的で, 著しく優れる。
論文 参考訳(メタデータ) (2024-02-26T16:11:03Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyToolは、多種多様で長いツールドキュメントを統一的で簡潔なツール命令に変換するフレームワークである。
トークン使用量を大幅に削減し、現実のシナリオにおけるツール利用のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-01-11T15:45:11Z) - Large Language Models as Tool Makers [85.00361145117293]
我々はLLM A s Tool Makers (LATM) と呼ばれるクローズドループフレームワークを導入する。
ツール作成: 1 つのツール作成: LLM がタスクセットのためのツールを作成するツールメーカとして機能する 2 つのツール使用: 別の LLM がツールユーザとして機能し、ツールメーカが問題解決のために構築したツールを適用する。
論文 参考訳(メタデータ) (2023-05-26T17:50:11Z) - Making Language Models Better Tool Learners with Execution Feedback [36.30542737293863]
ツールは、人間が環境を理解し、形を変えることができる重要なインターフェースとして機能する。
既存のツール学習手法は、ツールを無差別に活用するために大きな言語モデルを誘導する。
ツール実行からのフィードバックを通じてモデルを継続的に学習することを可能にする2段階のエンドツーエンドフレームワークであるTool leaRning wIth exeCution fEedback (TRICE)を提案する。
論文 参考訳(メタデータ) (2023-05-22T14:37:05Z) - ART: Automatic multi-step reasoning and tool-use for large language
models [105.57550426609396]
大規模言語モデル(LLM)は、数秒とゼロショットの設定で複雑な推論を行うことができる。
各推論ステップは、コアLLM機能を超えて計算をサポートする外部ツールに依存することができる。
プログラムとして中間推論ステップを自動生成するために凍結LDMを使用するフレームワークであるART(Automatic Reasoning and Tool-use)を導入する。
論文 参考訳(メタデータ) (2023-03-16T01:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。