論文の概要: Diffusion State-Guided Projected Gradient for Inverse Problems
- arxiv url: http://arxiv.org/abs/2410.03463v1
- Date: Fri, 4 Oct 2024 14:26:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 22:09:37.810447
- Title: Diffusion State-Guided Projected Gradient for Inverse Problems
- Title(参考訳): 逆問題に対する拡散状態誘導射影勾配
- Authors: Rayhan Zirvi, Bahareh Tolooshams, Anima Anandkumar,
- Abstract要約: 逆問題に対する拡散状態ガイド型射影勾配(DiffStateGrad)を提案する。
DiffStateGrad は拡散過程の中間状態の低ランク近似である部分空間に測定勾配を投影する。
DiffStateGradは、測定手順のステップサイズとノイズの選択によって拡散モデルのロバスト性を向上させる。
- 参考スコア(独自算出の注目度): 82.24625224110099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in diffusion models have been effective in learning data priors for solving inverse problems. They leverage diffusion sampling steps for inducing a data prior while using a measurement guidance gradient at each step to impose data consistency. For general inverse problems, approximations are needed when an unconditionally trained diffusion model is used since the measurement likelihood is intractable, leading to inaccurate posterior sampling. In other words, due to their approximations, these methods fail to preserve the generation process on the data manifold defined by the diffusion prior, leading to artifacts in applications such as image restoration. To enhance the performance and robustness of diffusion models in solving inverse problems, we propose Diffusion State-Guided Projected Gradient (DiffStateGrad), which projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process. DiffStateGrad, as a module, can be added to a wide range of diffusion-based inverse solvers to improve the preservation of the diffusion process on the prior manifold and filter out artifact-inducing components. We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise while improving the worst-case performance. Finally, we demonstrate that DiffStateGrad improves upon the state-of-the-art on linear and nonlinear image restoration inverse problems.
- Abstract(参考訳): 拡散モデルの最近の進歩は、逆問題解決のためのデータ事前学習に有効である。
拡散サンプリングステップを利用して、各ステップで測定ガイダンス勾配を使用してデータの一貫性を強制する。
一般の逆問題では、測定精度が低下し、不正確な後続サンプリングが生じるため、無条件で訓練された拡散モデルを使用する場合、近似が必要である。
言い換えれば、それらの近似により、これらの手法は拡散前の拡散によって定義されるデータ多様体上の生成過程を保存できず、画像復元のような応用の成果物に繋がる。
拡散過程の中間状態の低ランク近似である部分空間に測定勾配を投影する拡散状態誘導射影勾配(DiffStateGrad)を提案する。
DiffStateGradは、モジュールとして、幅広い拡散ベースの逆解法に付加することができ、以前の多様体上の拡散過程の保存を改善し、アーティファクト誘導コンポーネントをフィルタリングすることができる。
DiffStateGradは、測定手順のステップサイズとノイズの選択による拡散モデルのロバスト性の向上と、最悪の場合の性能向上を両立させる。
最後に、DiffStateGradは、線形および非線形画像復元の逆問題に対する最先端技術を改善することを実証する。
関連論文リスト
- Learning Diffusion Model from Noisy Measurement using Principled Expectation-Maximization Method [9.173055778539641]
本稿では,任意の破損型を持つ雑音データから拡散モデルを反復的に学習する,原則的予測最大化(EM)フレームワークを提案する。
筆者らはモンテカルロ法を用いて,ノイズ測定からクリーンな画像を正確に推定し,次いで再構成画像を用いて拡散モデルを訓練した。
論文 参考訳(メタデータ) (2024-10-15T03:54:59Z) - G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
本稿では,従来の離散拡散に基づく画像生成モデルを活用することによって,線形逆問題に対処する新しい手法を提案する。
我々の知る限りでは、これは画像逆問題を解決するために離散拡散モデルに基づく先行手法を使う最初のアプローチである。
論文 参考訳(メタデータ) (2024-10-09T06:18:25Z) - Gaussian is All You Need: A Unified Framework for Solving Inverse Problems via Diffusion Posterior Sampling [16.683393726483978]
拡散モデルは、複雑なデータ分布をモデル化することによって、様々な高品質な画像を生成することができる。
既存の拡散法の多くは拡散逆サンプリングプロセスにデータ一貫性ステップを統合する。
既存の近似は不十分か計算的に非効率であることを示す。
論文 参考訳(メタデータ) (2024-09-13T15:20:03Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
そこで本稿では, 償却変分推論の観点から, 拡散による逆問題の解法を提案する。
我々の償却推論は、測定結果を対応するクリーンデータの暗黙の後方分布に直接マッピングする関数を学習し、未知の計測でも単一ステップの後方サンプリングを可能にする。
論文 参考訳(メタデータ) (2024-07-23T02:14:18Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
現在の手法では、劣化が知られており、復元と多様性の点で印象的な結果をもたらすと仮定している。
本研究では、これらのモデルの効率を活用し、復元された画像と未知のパラメータを共同で推定する。
本手法は,拡散モデルから抽出したサンプルを用いて,問題の対数類似度を近似し,未知のモデルパラメータを推定する方法とを交互に比較する。
論文 参考訳(メタデータ) (2023-09-01T06:47:13Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
我々は、後方サンプリングの近似により、雑音(非線形)逆問題に対処するために拡散解法を拡張した。
本手法は,拡散モデルが様々な計測ノイズ統計を組み込むことができることを示す。
論文 参考訳(メタデータ) (2022-09-29T11:12:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
我々は,現在の解法がデータ多様体からサンプルパスを逸脱し,エラーが蓄積することを示す。
この問題に対処するため、多様体の制約に着想を得た追加の補正項を提案する。
本手法は理論上も経験上も従来の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-02T09:06:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。