論文の概要: SeBS-Flow: Benchmarking Serverless Cloud Function Workflows
- arxiv url: http://arxiv.org/abs/2410.03480v2
- Date: Mon, 7 Oct 2024 16:28:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 21:59:46.017014
- Title: SeBS-Flow: Benchmarking Serverless Cloud Function Workflows
- Title(参考訳): SeBS-Flow: サーバレスクラウドファンクションワークフローのベンチマーク
- Authors: Larissa Schmid, Marcin Copik, Alexandru Calotoiu, Laurin Brandner, Anne Koziolek, Torsten Hoefler,
- Abstract要約: 本稿では、最初のサーバーレスワークフローベンチマークスイートSeBS-Flowを提案する。
SeBS-Flowには6つの実世界のアプリケーションベンチマークと、異なる計算パターンを表す4つのマイクロベンチマークが含まれている。
当社では,パフォーマンス,コスト,スケーラビリティ,ランタイムの偏差など,3つの主要なクラウドプラットフォームに関する包括的な評価を実施しています。
- 参考スコア(独自算出の注目度): 51.4200085836966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Serverless computing has emerged as a prominent paradigm, with a significant adoption rate among cloud customers. While this model offers advantages such as abstraction from the deployment and resource scheduling, it also poses limitations in handling complex use cases due to the restricted nature of individual functions. Serverless workflows address this limitation by orchestrating multiple functions into a cohesive application. However, existing serverless workflow platforms exhibit significant differences in their programming models and infrastructure, making fair and consistent performance evaluations difficult in practice. To address this gap, we propose the first serverless workflow benchmarking suite SeBS-Flow, providing a platform-agnostic workflow model that enables consistent benchmarking across various platforms. SeBS-Flow includes six real-world application benchmarks and four microbenchmarks representing different computational patterns. We conduct comprehensive evaluations on three major cloud platforms, assessing performance, cost, scalability, and runtime deviations. We make our benchmark suite open-source, enabling rigorous and comparable evaluations of serverless workflows over time.
- Abstract(参考訳): サーバレスコンピューティングは、クラウド顧客の間で大きな採用率を持つ、目立ったパラダイムとして現れています。
このモデルは、デプロイからの抽象化やリソーススケジューリングといった利点を提供するが、個々の関数の制限された性質のため、複雑なユースケースを扱う際にも制限が生じる。
サーバレスワークフローは、複数の関数を結合的なアプリケーションにオーケストレーションすることで、この制限に対処する。
しかしながら、既存のサーバレスワークフロープラットフォームは、プログラミングモデルとインフラストラクチャに大きな違いを示しており、フェアで一貫したパフォーマンス評価を実際に難しいものにしている。
このギャップに対処するために、さまざまなプラットフォームで一貫したベンチマークを可能にするプラットフォームに依存しないワークフローモデルを提供する、最初のサーバレスワークフローベンチマークスイートであるSeBS-Flowを提案する。
SeBS-Flowには6つの実世界のアプリケーションベンチマークと、異なる計算パターンを表す4つのマイクロベンチマークが含まれている。
当社では,パフォーマンス,コスト,スケーラビリティ,ランタイムの偏差など,3つの主要なクラウドプラットフォームに関する包括的な評価を実施しています。
ベンチマークスイートをオープンソースにすることで、サーバーレスワークフローを厳格かつ同等に評価することが可能になります。
関連論文リスト
- On the Cost of Model-Serving Frameworks: An Experimental Evaluation [2.6232657671486983]
実運用環境でモデルを効果的にデプロイし、管理するためには、サービング戦略が不可欠です。
これらの戦略により、実際のアプリケーションでモデルが利用可能で、スケーラブルで、信頼性があり、パフォーマンスが保証される。
DL固有のフレームワーク(TensorFlow ServingとTorchServe)は、3つの汎用MLフレームワークよりも大幅にレイテンシが低いことを示す。
論文 参考訳(メタデータ) (2024-11-15T16:36:21Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
複数面シナリオと複雑なグラフワークフロー構造を備えた統合ワークフロー生成ベンチマークであるWorFBenchを紹介する。
また,サブシーケンスとサブグラフマッチングアルゴリズムを利用したシステム評価プロトコルWorFEvalを提案する。
我々は、生成されたタスクが下流のタスクを強化し、推論中により少ない時間で優れたパフォーマンスを達成することができることを観察する。
論文 参考訳(メタデータ) (2024-10-10T12:41:19Z) - ShuffleBench: A Benchmark for Large-Scale Data Shuffling Operations with
Distributed Stream Processing Frameworks [1.4374467687356276]
本稿では、最新のストリーム処理フレームワークの性能を評価するための新しいベンチマークであるShuffleBenchを紹介する。
ShuffleBenchは、大規模なクラウドオブザーバビリティプラットフォームのほぼリアルタイム分析の要件にインスパイアされている。
その結果,Herzelcastは低レイテンシでデータストリームを処理するのに対して,Flinkは最高スループットを実現していることがわかった。
論文 参考訳(メタデータ) (2024-03-07T15:06:24Z) - Green AI: A Preliminary Empirical Study on Energy Consumption in DL
Models Across Different Runtime Infrastructures [56.200335252600354]
トレーニング済みのモデルを、ネイティブな開発環境とは異なる環境にデプロイするのは、一般的なプラクティスです。
これにより、インフラを含むONNXや標準フォーマットとして機能するONNXなどの交換フォーマットが導入された。
論文 参考訳(メタデータ) (2024-02-21T09:18:44Z) - FuzzyFlow: Leveraging Dataflow To Find and Squash Program Optimization
Bugs [92.47146416628965]
FuzzyFlowはプログラム最適化をテストするために設計されたフォールトローカライゼーションとテストケース抽出フレームワークである。
我々は、データフロープログラム表現を活用して、完全に再現可能なシステム状態と最適化のエリア・オブ・エフェクトをキャプチャする。
テスト時間を削減するため,テスト入力を最小限に抑えるアルゴリズムを設計し,再計算のためのメモリ交換を行う。
論文 参考訳(メタデータ) (2023-06-28T13:00:17Z) - Cheaply Evaluating Inference Efficiency Metrics for Autoregressive
Transformer APIs [66.30706841821123]
大規模言語モデル(LLM)は、自然言語処理において多くの最先端システムに電力を供給する。
LLMは、推論時でさえ非常に計算コストが高い。
モデル間での推論効率を比較するための新しい指標を提案する。
論文 参考訳(メタデータ) (2023-05-03T21:51:42Z) - Performance Modeling of Metric-Based Serverless Computing Platforms [5.089110111757978]
提案されたパフォーマンスモデルは、開発者とプロバイダが異なる構成でデプロイメントのパフォーマンスとコストを予測するのに役立つ。
Knative上での実環境実験を行うことで,提案した性能モデルの適用性と精度を検証した。
論文 参考訳(メタデータ) (2022-02-23T00:39:01Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Reproducible and Portable Big Data Analytics in the Cloud [4.948702463455218]
クラウドでビッグデータアプリケーションを再現する上で,大きな課題は2つあります。
ひとつは、クラウドにおけるビッグデータ分析のエンドツーエンド実行を自動化する方法だ。
2つ目は、AWSやAzureなど、ひとつのクラウド用に開発されたアプリケーションで、別のクラウドで再現することは困難である。
論文 参考訳(メタデータ) (2021-12-17T20:52:03Z) - Benchmarking and Performance Modelling of MapReduce Communication
Pattern [0.0]
モデルは、目に見えないアプリケーションのパフォーマンスを推測し、任意のデータセットを入力として使用する場合のパフォーマンスを近似するために使用することができる。
実証実験を2つの設定で実施することで,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-05-23T21:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。