Towards Reproducible LLM Evaluation: Quantifying Uncertainty in LLM Benchmark Scores
- URL: http://arxiv.org/abs/2410.03492v1
- Date: Fri, 4 Oct 2024 15:04:28 GMT
- Title: Towards Reproducible LLM Evaluation: Quantifying Uncertainty in LLM Benchmark Scores
- Authors: Robert E. Blackwell, Jon Barry, Anthony G. Cohn,
- Abstract summary: We use benchmarks designed for testing large language models' capacity to reason about cardinal directions.
We suggest a simple method for cost-effectively quantifying the uncertainty of a benchmark score.
- Score: 2.886479348067378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are stochastic, and not all models give deterministic answers, even when setting temperature to zero with a fixed random seed. However, few benchmark studies attempt to quantify uncertainty, partly due to the time and cost of repeated experiments. We use benchmarks designed for testing LLMs' capacity to reason about cardinal directions to explore the impact of experimental repeats on mean score and prediction interval. We suggest a simple method for cost-effectively quantifying the uncertainty of a benchmark score and make recommendations concerning reproducible LLM evaluation.
Related papers
- The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism [39.392450788666814]
Current evaluations of large language models (LLMs) often overlook non-determinism.
greedy decoding generally outperforms sampling methods for most evaluated tasks.
Smaller LLMs can match or surpass larger models such as GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-15T06:12:17Z) - Inference-Time Decontamination: Reusing Leaked Benchmarks for Large Language Model Evaluation [61.350306618479365]
Leakage of benchmarks can prevent the accurate assessment of large language models' true performance.
We propose Inference-Time Decontamination (ITD) to address this issue.
ITD reduces inflated accuracy by 22.9% on GSM8K and 19.0% on MMLU.
arXiv Detail & Related papers (2024-06-20T04:35:59Z) - UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions [10.28688988951815]
UBENCH is a benchmark for evaluating large language models.
It includes 3,978 multiple-choice questions covering knowledge, language, understanding, and reasoning abilities.
We also evaluate the reliability of 15 popular LLMs, finding GLM4 to be the most outstanding.
arXiv Detail & Related papers (2024-06-18T16:50:38Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.
The question of how reliable these evaluators are has emerged as a crucial research question.
We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
We propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits.
Most LLMs struggle on SummEdits, with performance close to random chance.
The best-performing model, GPT-4, is still 8% below estimated human performance.
arXiv Detail & Related papers (2023-05-23T21:50:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.