Fine-Grained Expressive Power of Weisfeiler-Leman: A Homomorphism Counting Perspective
- URL: http://arxiv.org/abs/2410.03517v1
- Date: Fri, 4 Oct 2024 15:36:48 GMT
- Title: Fine-Grained Expressive Power of Weisfeiler-Leman: A Homomorphism Counting Perspective
- Authors: Junru Zhou, Muhan Zhang,
- Abstract summary: We provide a theoretical framework to determine the homomorphism counting power of an arbitrary class of graph neural networks (GNNs)
As the considered design space is large enough to accommodate almost all known powerful GNNs, our result greatly extends all existing works, and may find its application in the automation of GNN model design.
- Score: 24.729126775414922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability of graph neural networks (GNNs) to count homomorphisms has recently been proposed as a practical and fine-grained measure of their expressive power. Although several existing works have investigated the homomorphism counting power of certain GNN families, a simple and unified framework for analyzing the problem is absent. In this paper, we first propose \emph{generalized folklore Weisfeiler-Leman (GFWL)} algorithms as a flexible design basis for expressive GNNs, and then provide a theoretical framework to algorithmically determine the homomorphism counting power of an arbitrary class of GNN within the GFWL design space. As the considered design space is large enough to accommodate almost all known powerful GNNs, our result greatly extends all existing works, and may find its application in the automation of GNN model design.
Related papers
- A Logic for Reasoning About Aggregate-Combine Graph Neural Networks [11.313331046805365]
We show that each formula can be transformed into an equivalent graph neural network (GNN)
We also show that the satisfiability problem is PSPACE-complete.
arXiv Detail & Related papers (2024-04-30T21:16:38Z) - Beyond Weisfeiler-Lehman: A Quantitative Framework for GNN
Expressiveness [35.409017863665575]
Homomorphism expressivity measures the ability of GNN models to count graphs under homomorphism.
By examining four classes of prominent GNNs as case studies, we derive simple, unified, and elegant descriptions of their homomorphism expressivity.
Our results provide novel insights into a series of previous work, unify the landscape of different subareas in the community, and settle several open questions.
arXiv Detail & Related papers (2024-01-16T17:23:23Z) - MAG-GNN: Reinforcement Learning Boosted Graph Neural Network [68.60884768323739]
A particular line of work proposed subgraph GNNs that use subgraph information to improve GNNs' expressivity and achieved great success.
Such effectivity sacrifices the efficiency of GNNs by enumerating all possible subgraphs.
We propose Magnetic Graph Neural Network (MAG-GNN), a reinforcement learning (RL) boosted GNN, to solve the problem.
arXiv Detail & Related papers (2023-10-29T20:32:21Z) - Equivariant Polynomials for Graph Neural Networks [38.15983687193912]
Graph Networks (GNN) are inherently limited in their expressive power.
This paper introduces an alternative power hierarchy based on the ability of GNNs to calculate equivariants of certain degree.
These enhanced GNNs demonstrate state-of-the-art results in experiments across multiple graph learning benchmarks.
arXiv Detail & Related papers (2023-02-22T18:53:38Z) - MGNN: Graph Neural Networks Inspired by Distance Geometry Problem [28.789684784093048]
Graph Neural Networks (GNNs) have emerged as a prominent research topic in the field of machine learning.
In this paper, we propose a GNN model inspired by the congruent-inphilic property of the classifiers in the classification phase of GNNs.
We extensively evaluate the effectiveness of our model through experiments conducted on both synthetic and real-world datasets.
arXiv Detail & Related papers (2022-01-31T04:15:42Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - Expressive Power of Invariant and Equivariant Graph Neural Networks [10.419350129060598]
We show that Folklore Graph Neural Networks (FGNN) are the most expressive architectures proposed so far for a given tensor order.
FGNNs are able to learn how to solve the problem, leading to much better average performances than existing algorithms.
arXiv Detail & Related papers (2020-06-28T16:35:45Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
"Graph Substructure Networks" (GSN) is a topologically-aware message passing scheme based on substructure encoding.
We show that it is strictly more expressive than the Weisfeiler-Leman (WL) graph isomorphism test.
We perform an extensive evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings.
arXiv Detail & Related papers (2020-06-16T15:30:31Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
Graph Neural Networks (GNNs) are emerging machine learning models on graphs.
Most existing GNN models in practice are shallow and essentially feature-centric.
We show empirically and analytically that the existing shallow GNNs cannot preserve graph structures well.
We propose Eigen-GNN, a plug-in module to boost GNNs ability in preserving graph structures.
arXiv Detail & Related papers (2020-06-08T02:47:38Z) - Efficient Probabilistic Logic Reasoning with Graph Neural Networks [63.099999467118245]
Markov Logic Networks (MLNs) can be used to address many knowledge graph problems.
Inference in MLN is computationally intensive, making the industrial-scale application of MLN very difficult.
We propose a graph neural network (GNN) variant, named ExpressGNN, which strikes a nice balance between the representation power and the simplicity of the model.
arXiv Detail & Related papers (2020-01-29T23:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.