PRF: Parallel Resonate and Fire Neuron for Long Sequence Learning in Spiking Neural Networks
- URL: http://arxiv.org/abs/2410.03530v2
- Date: Wed, 30 Oct 2024 01:39:20 GMT
- Title: PRF: Parallel Resonate and Fire Neuron for Long Sequence Learning in Spiking Neural Networks
- Authors: Yulong Huang, Zunchang Liu, Changchun Feng, Xiaopeng Lin, Hongwei Ren, Haotian Fu, Yue Zhou, Hong Xing, Bojun Cheng,
- Abstract summary: We address the efficiency and performance challenges of long sequence learning in Spiking Neural Networks (SNNs) simultaneously.
First, we propose a decoupled reset method for parallel spiking neuron training, reducing the typical Leaky Integrate-and-Fire (LIF) model's training time from $O(L2)$ to $O(Llog L)$.
Secondly, to capture long-range dependencies, we propose a Parallel Resonate and Fire (PRF) neuron, which leverages an oscillating membrane potential driven by a resonate mechanism from a differentiable reset function in the complex domain
- Score: 6.545474731089018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there is growing demand for effective and efficient long sequence modeling, with State Space Models (SSMs) proving to be effective for long sequence tasks. To further reduce energy consumption, SSMs can be adapted to Spiking Neural Networks (SNNs) using spiking functions. However, current spiking-formalized SSMs approaches still rely on float-point matrix-vector multiplication during inference, undermining SNNs' energy advantage. In this work, we address the efficiency and performance challenges of long sequence learning in SNNs simultaneously. First, we propose a decoupled reset method for parallel spiking neuron training, reducing the typical Leaky Integrate-and-Fire (LIF) model's training time from $O(L^2)$ to $O(L\log L)$, effectively speeding up the training by $6.57 \times$ to $16.50 \times$ on sequence lengths $1,024$ to $32,768$. To our best knowledge, this is the first time that parallel computation with a reset mechanism is implemented achieving equivalence to its sequential counterpart. Secondly, to capture long-range dependencies, we propose a Parallel Resonate and Fire (PRF) neuron, which leverages an oscillating membrane potential driven by a resonate mechanism from a differentiable reset function in the complex domain. The PRF enables efficient long sequence learning while maintaining parallel training. Finally, we demonstrate that the proposed spike-driven architecture using PRF achieves performance comparable to Structured SSMs (S4), with two orders of magnitude reduction in energy consumption, outperforming Transformer on Long Range Arena tasks.
Related papers
- Were RNNs All We Needed? [53.393497486332]
We revisit traditional recurrent neural networks (RNNs) from over a decade ago.
We show that by removing their hidden state dependencies from their input, forget, and update gates, LSTMs and GRUs no longer need to BPTT and can be efficiently trained in parallel.
arXiv Detail & Related papers (2024-10-02T03:06:49Z) - Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
computational inefficiency of spiking neural networks (SNNs) is primarily due to the sequential updates of membrane potential.
We propose Membrane Potential Estimation Parallel Spiking Neurons (MPE-PSN), a parallel computation method for spiking neurons.
Our approach exhibits promise for enhancing computational efficiency, particularly under conditions of elevated neuron density.
arXiv Detail & Related papers (2024-09-08T05:14:22Z) - SpikingSSMs: Learning Long Sequences with Sparse and Parallel Spiking State Space Models [19.04709216497077]
We develop spiking state space models (SpikingSSMs) for long sequence learning.
Inspired by dendritic neuron structure, we hierarchically integrate neuronal dynamics with the original SSM block.
We propose a light-weight surrogate dynamic network which accurately predicts the after-reset membrane potential and compatible to learnable thresholds.
arXiv Detail & Related papers (2024-08-27T09:35:49Z) - Speed Limits for Deep Learning [67.69149326107103]
Recent advancement in thermodynamics allows bounding the speed at which one can go from the initial weight distribution to the final distribution of the fully trained network.
We provide analytical expressions for these speed limits for linear and linearizable neural networks.
Remarkably, given some plausible scaling assumptions on the NTK spectra and spectral decomposition of the labels -- learning is optimal in a scaling sense.
arXiv Detail & Related papers (2023-07-27T06:59:46Z) - Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons [1.7056768055368383]
Spiking neural networks (SNN) are able to learn features while using less energy, especially on neuromorphic hardware.
Most widely used neuron in deep learning is the temporal and Fire (LIF) neuron.
arXiv Detail & Related papers (2023-06-22T04:25:27Z) - Resurrecting Recurrent Neural Networks for Long Sequences [45.800920421868625]
Recurrent Neural Networks (RNNs) offer fast inference on long sequences but are hard to optimize and slow to train.
Deep state-space models (SSMs) have recently been shown to perform remarkably well on long sequence modeling tasks.
We show that careful design of deep RNNs using standard signal propagation arguments can recover the impressive performance of deep SSMs on long-range reasoning tasks.
arXiv Detail & Related papers (2023-03-11T08:53:11Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
Spiking Neural Networks (SNNs) are promising energy-efficient models for neuromorphic computing.
We propose the Spatial Learning Through Time (SLTT) method that can achieve high performance while greatly improving training efficiency.
Our method achieves state-of-the-art accuracy on ImageNet, while the memory cost and training time are reduced by more than 70% and 50%, respectively, compared with BPTT.
arXiv Detail & Related papers (2023-02-28T05:01:01Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Towards Energy-Efficient, Low-Latency and Accurate Spiking LSTMs [1.7969777786551424]
Spiking Neural Networks (SNNs) have emerged as an attractive-temporal computing paradigm vision for complex tasks.
We propose an optimized spiking long short-term memory networks (LSTM) training framework that involves a novel.
rev-to-SNN conversion framework, followed by SNN training.
We evaluate our framework on sequential learning tasks including temporal M, Google Speech Commands (GSC) datasets, and UCI Smartphone on different LSTM architectures.
arXiv Detail & Related papers (2022-10-23T04:10:27Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.