論文の概要: Multiscale fusion enhanced spiking neural network for invasive BCI neural signal decoding
- arxiv url: http://arxiv.org/abs/2410.03533v1
- Date: Sat, 14 Sep 2024 09:53:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 21:39:44.753212
- Title: Multiscale fusion enhanced spiking neural network for invasive BCI neural signal decoding
- Title(参考訳): 侵入的BCI神経信号復号のためのマルチスケール核融合強化スパイクニューラルネットワーク
- Authors: Yu Song, Liyuan Han, Bo Xu, Tielin Zhang,
- Abstract要約: 本稿では,MFSNN(Multiscale Fusion Spiking Neural Network)を用いた新しいアプローチを提案する。
MFSNNは、人間の視覚知覚に見られる並列処理とマルチスケール機能融合をエミュレートし、リアルタイム、効率的、エネルギーを節約する神経信号復号を可能にする。
MFSNNは、GRUなどの従来のニューラルネットワーク手法を精度と計算効率の両方で超越している。
- 参考スコア(独自算出の注目度): 13.108613110379961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain-computer interfaces (BCIs) are an advanced fusion of neuroscience and artificial intelligence, requiring stable and long-term decoding of neural signals. Spiking Neural Networks (SNNs), with their neuronal dynamics and spike-based signal processing, are inherently well-suited for this task. This paper presents a novel approach utilizing a Multiscale Fusion enhanced Spiking Neural Network (MFSNN). The MFSNN emulates the parallel processing and multiscale feature fusion seen in human visual perception to enable real-time, efficient, and energy-conserving neural signal decoding. Initially, the MFSNN employs temporal convolutional networks and channel attention mechanisms to extract spatiotemporal features from raw data. It then enhances decoding performance by integrating these features through skip connections. Additionally, the MFSNN improves generalizability and robustness in cross-day signal decoding through mini-batch supervised generalization learning. In two benchmark invasive BCI paradigms, including the single-hand grasp-and-touch and center-and-out reach tasks, the MFSNN surpasses traditional artificial neural network methods, such as MLP and GRU, in both accuracy and computational efficiency. Moreover, the MFSNN's multiscale feature fusion framework is well-suited for the implementation on neuromorphic chips, offering an energy-efficient solution for online decoding of invasive BCI signals.
- Abstract(参考訳): 脳コンピュータインタフェース(BCI)は、神経科学と人工知能の高度な融合であり、神経信号の安定かつ長期の復号を必要とする。
神経力学とスパイクに基づく信号処理を備えたスパイクニューラルネットワーク(SNN)は、このタスクに本質的に適している。
本稿では,MFSNN(Multiscale Fusion enhanced Spiking Neural Network)を用いた新しい手法を提案する。
MFSNNは、人間の視覚知覚に見られる並列処理とマルチスケール機能融合をエミュレートし、リアルタイム、効率的、エネルギーを節約する神経信号復号を可能にする。
当初、MSSNNは時間的畳み込みネットワークとチャネルアテンション機構を使用して、生データから時空間の特徴を抽出していた。
次に、スキップ接続を通じてこれらの機能を統合することでデコードパフォーマンスを向上させる。
さらに、MFSNNは、ミニバッチ教師付き一般化学習を通じて、日次信号復号における一般化性とロバスト性を向上させる。
MFSNNは、シングルハンドのグリップ・アンド・タッチとセンター・アンド・アウトリーチタスクを含む2つのベンチマークによるBCIパラダイムにおいて、MLPやGRUといった従来のニューラルネットワーク手法を精度と計算効率の両方で超越している。
さらに、MFSNNのマルチスケール機能融合フレームワークは、ニューロモルフィックチップの実装に適しており、侵入的BCI信号のオンラインデコードのためのエネルギー効率の高いソリューションを提供する。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
我々は、SigmaDelta$-low-pass RNN(lpRNN)を、レートベースのRNNをスパイクニューラルネットワーク(SNN)にマッピングするために提示する。
適応スパイキングニューロンモデルは、$SigmaDelta$-modulationを使って信号を符号化し、正確なマッピングを可能にする。
我々は、Intelのニューロモルフィック研究チップLoihiにおけるlpRNNの実装を実演する。
論文 参考訳(メタデータ) (2024-07-18T14:06:07Z) - Stochastic Spiking Neural Networks with First-to-Spike Coding [7.955633422160267]
スパイキングニューラルネットワーク (SNN) は、その生物の楽観性とエネルギー効率で知られている。
本研究では,SNNアーキテクチャにおける新しい計算手法と情報符号化方式の融合について検討する。
提案手法のトレードオフを,精度,推論遅延,スパイク空間性,エネルギー消費,データセットの観点から検討する。
論文 参考訳(メタデータ) (2024-04-26T22:52:23Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
提案手法は、まずゼロフォース検出器(ZF)を用いて受信信号を前処理し、その後、畳み込みニューラルネットワーク(CNN)と完全連結ニューラルネットワーク(FCNN)からなるニューラルネットワークを用いる。
FCNN部は2つの完全に接続された層しか使用せず、複雑さとBER(bit error rate)パフォーマンスのトレードオフをもたらすことができる。
提案したディープ畳み込みニューラルネットワークに基づく検出・復調方式は,ZF検出器よりも高いBER性能を示し,複雑性が増大することが実証されている。
論文 参考訳(メタデータ) (2022-02-06T22:18:42Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - HemCNN: Deep Learning enables decoding of fNIRS cortical signals in hand
grip motor tasks [0.0]
畳み込みニューラルネットワークアーキテクチャであるHemCNNを用いて、fNIRSの左右手力復号化問題を解く。
HemCNNは、どの手が自然主義的な手の動き速度でグリップを実行したかを検知し、標準的な手法より優れていた。
論文 参考訳(メタデータ) (2021-03-09T10:32:53Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。