Artificial intelligence inspired freeform optics design: a review
- URL: http://arxiv.org/abs/2410.03554v2
- Date: Fri, 25 Oct 2024 04:42:55 GMT
- Title: Artificial intelligence inspired freeform optics design: a review
- Authors: Lei Feng, Jingxing Liao, Jingna Yang,
- Abstract summary: This article reviews the latest developments in AI applications within freeform optics design.
It addresses the benefits of AI, such as improved accuracy and performance, alongside challenges like data requirements, model interpretability, and computational complexity.
The future of AI in freeform optics design looks promising, with potential advancements in hybrid design methods, interpretable AI, AI-driven manufacturing, and targeted research for specific applications.
- Score: 5.118772741438762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating artificial intelligence (AI) techniques such as machine learning and deep learning into freeform optics design has significantly enhanced design efficiency, expanded the design space, and led to innovative solutions. This article reviews the latest developments in AI applications within this field, highlighting their roles in initial design generation, optimization, and performance prediction. It also addresses the benefits of AI, such as improved accuracy and performance, alongside challenges like data requirements, model interpretability, and computational complexity. Despite these challenges, the future of AI in freeform optics design looks promising, with potential advancements in hybrid design methods, interpretable AI, AI-driven manufacturing, and targeted research for specific applications. Collaboration among researchers, engineers, and designers is essential to fully harness AI's potential and drive innovation in optics.
Related papers
- Generative AI Application for Building Industry [10.154329382433213]
This paper investigates the transformative potential of generative AI technologies, particularly large language models (LLMs) in the building industry.
The research highlights how LLMs can automate labor-intensive processes, significantly improving efficiency, accuracy, and safety in building practices.
arXiv Detail & Related papers (2024-10-01T21:59:08Z) - Brain-inspired Artificial Intelligence: A Comprehensive Review [15.964784631512414]
Review explores the diverse design inspirations that have shaped modern AI models, i.e., brain-inspired artificial intelligence (BIAI)
We present a classification framework that categorizes BIAI approaches into physical structure-inspired and human behavior-inspired models.
We examine the real-world applications where different BIAI models excel, highlighting their practical benefits and deployment challenges.
arXiv Detail & Related papers (2024-08-27T06:49:50Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - Designing an AI-Driven Talent Intelligence Solution: Exploring Big Data
to extend the TOE Framework [0.0]
This study aims to identify the new requirements for developing AI-oriented artifacts to address talent management issues.
A design science method is adopted for conducting the experimental study with structured machine learning techniques.
arXiv Detail & Related papers (2022-07-25T10:42:50Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Enabling Design Methodologies and Future Trends forEdge AI:
Specialization and Co-design [37.54971466190214]
We provide a comprehensive survey of the latest enabling design methodologies that span the entire edge AI development stack.
We suggest that the key methodologies for effective edge AI development are single-layer specialization and cross-layer co-design.
arXiv Detail & Related papers (2021-03-25T16:29:55Z) - Convergence of Artificial Intelligence and High Performance Computing on
NSF-supported Cyberinfrastructure [3.4291439418246177]
Artificial Intelligence (AI) applications have powered transformational solutions for big data challenges in industry and technology.
As AI continues to evolve into a computing paradigm endowed with statistical and mathematical rigor, it has become apparent that single- GPU solutions for training, validation, and testing are no longer sufficient.
This realization has been driving the confluence of AI and high performance computing to reduce time-to-insight.
arXiv Detail & Related papers (2020-03-18T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.