論文の概要: SiMilarity-Enhanced Homophily for Multi-View Heterophilous Graph Clustering
- arxiv url: http://arxiv.org/abs/2410.03596v1
- Date: Fri, 4 Oct 2024 16:55:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 21:08:10.494213
- Title: SiMilarity-Enhanced Homophily for Multi-View Heterophilous Graph Clustering
- Title(参考訳): SiMilarity-Enhanced Homophily for Multi-View Heterophilous Graph Clustering
- Authors: Jianpeng Chen, Yawen Ling, Yazhou Ren, Zichen Wen, Tianyi Wu, Shufei Zhang, Lifang He,
- Abstract要約: マルチビューヘテロ親和性グラフクラスタリング(SMHGC)のためのSiMilarity-enhanced Homophilyを提案する。
多視点ヘテロ親和性データセットおよびホモ親和性データセットの最先端実験結果は、教師なし多視点ヘテロ親和性グラフ学習における類似性の強い能力を示す。
- 参考スコア(独自算出の注目度): 18.108753344903473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing prevalence of graph-structured data, multi-view graph clustering has been widely used in various downstream applications. Existing approaches primarily rely on a unified message passing mechanism, which significantly enhances clustering performance. Nevertheless, this mechanism limits its applicability to heterophilous situations, as it is fundamentally predicated on the assumption of homophily, i.e., the connected nodes often belong to the same class. In reality, this assumption does not always hold; a moderately or even mildly homophilous graph is more common than a fully homophilous one due to inevitable heterophilous information in the graph. To address this issue, in this paper, we propose a novel SiMilarity-enhanced Homophily for Multi-view Heterophilous Graph Clustering (SMHGC) approach. By analyzing the relationship between similarity and graph homophily, we propose to enhance the homophily by introducing three similarity terms, i.e., neighbor pattern similarity, node feature similarity, and multi-view global similarity, in a label-free manner. Then, a consensus-based inter- and intra-view fusion paradigm is proposed to fuse the improved homophilous graph from different views and utilize them for clustering. The state-of-the-art experimental results on both multi-view heterophilous and homophilous datasets collectively demonstrate the strong capacity of similarity for unsupervised multi-view heterophilous graph learning. Additionally, the consistent performance across semi-synthetic datasets with varying levels of homophily serves as further evidence of SMHGC's resilience to heterophily.
- Abstract(参考訳): グラフ構造化データの普及に伴い、様々なダウンストリームアプリケーションでマルチビューグラフクラスタリングが広く使われている。
既存のアプローチは主に、クラスタリングのパフォーマンスを大幅に向上させる統一メッセージパッシング機構に依存しています。
それにもかかわらず、この機構はホモフィリーの仮定に基づいて基本的に述示されるため、その適用性に制限を与える、すなわち連結ノードは同じクラスに属することが多い。
実際、この仮定は必ずしも成り立たない; 適度に、あるいは軽度にホモフィル性のあるグラフは、グラフの必然的ヘテロフィル性情報のため、完全ホモフィル性のあるグラフよりも一般的である。
本稿では,多視点ヘテロ親和性グラフクラスタリング(SMHGC)のためのSiMilarity-enhanced Homophilyを提案する。
類似度とグラフホモフィリーの関係を解析することにより,隣接パターン類似度,ノード特徴類似度,多視点グローバル類似度という3つの類似度項をラベルフリーで導入することにより,ホモフィリィを向上させることを提案する。
そして、異なる視点から改良された同好性グラフを融合させ、クラスタリングに利用するために、コンセンサスに基づくビュー内およびビュー内融合パラダイムを提案する。
多視点ヘテロ親和性データセットおよびホモ親和性データセットの最先端実験結果は、教師なし多視点ヘテロ親和性グラフ学習における類似性の強い能力を示す。
さらに、ホモフィリーのレベルが異なる半合成データセット間の一貫した性能は、SMHGCのヘテロフィリーへの弾力性のさらなる証拠となる。
関連論文リスト
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
ホモフィリ原理では、同じラベルや類似属性を持つieノードが接続される可能性が高い。
最近の研究で、GNNのパフォーマンスとNNのパフォーマンスが満足できない非自明なデータセットが特定されている。
論文 参考訳(メタデータ) (2024-07-12T18:04:32Z) - HeNCler: Node Clustering in Heterophilous Graphs through Learned Asymmetric Similarity [55.27586970082595]
HeNClerは、Heterophilous Node Clusteringの新しいアプローチである。
HeNClerは異種グラフコンテキストにおけるノードクラスタリングタスクの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-05-27T11:04:05Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
異なるクラス間のホモフィリー分布の差は、ホモフィリックグラフやヘテロフィリックグラフよりも著しく大きい。
我々は、この現象を定量的に記述した、クラスホモフィリーバリアンスと呼ばれる新しい計量を導入する。
その影響を軽減するために,ホモフィリーエッジ生成グラフニューラルネットワーク(HedGe)と呼ばれる新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2024-03-15T14:26:53Z) - Provable Filter for Real-world Graph Clustering [11.7278692671308]
実用的なグラフを扱うための原則的な方法が緊急に必要である。
我々は、それぞれ高度にホモ親和性とヘテロ親和性を持つ2つのグラフを構築する。
我々は、ホモフィルグラフとヘテロフィルグラフの両方に関する広範な実験を通して、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2024-03-06T12:37:49Z) - HiGPT: Heterogeneous Graph Language Model [27.390123898556805]
不均一グラフ学習は、異種グラフ内のエンティティ間の複雑な関係や多様な意味を捉えることを目的としている。
異種グラフ学習のための既存のフレームワークは、多種多様な異種グラフデータセットをまたいだ一般化に制限がある。
異種グラフ命令チューニングパラダイムを用いた一般的なグラフモデルであるHiGPTを提案する。
論文 参考訳(メタデータ) (2024-02-25T08:07:22Z) - Hetero$^2$Net: Heterophily-aware Representation Learning on
Heterogenerous Graphs [38.858702539146385]
We present Hetero$2$Net, a heterophily-aware HGNN that includes both masked metapath prediction and masked label prediction task。
Hetero$2$Netを,ヘテロフィリーのレベルが異なる5つの実世界ヘテロジニアスグラフベンチマークで評価した。
論文 参考訳(メタデータ) (2023-10-18T02:19:12Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
本稿では,WSI分析のために,異なる種類の核間の相互関係を利用する新しいグラフベースのフレームワークを提案する。
具体的には、WSI を各ノードに "nucleus-type" 属性と各エッジに類似した意味属性を持つ異種グラフとして定式化する。
我々のフレームワークは、様々なタスクに対してかなりのマージンで最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-07-09T14:43:40Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
本稿では,幾何学コントラスト学習(Geometry Contrastive Learning, GCL)と呼ばれる,新しい自己指導型学習手法を提案する。
GCLはユークリッドと双曲的な視点からヘテロジニアスグラフを同時に見ることができ、リッチな意味論と複雑な構造をモデル化する能力の強い融合を目指している。
4つのベンチマークデータセットの大規模な実験は、提案手法が強いベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-25T03:54:53Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Powerful Graph Convolutioal Networks with Adaptive Propagation Mechanism
for Homophily and Heterophily [38.50800951799888]
グラフ畳み込みネットワーク(GCN)は、グラフ構造化データ処理において大きな影響力を持つため、様々な分野に広く応用されている。
既存の方法は、主に高次近傍を集約したり、即時表現を結合することでヘテロフィリーを扱う。
本稿では, ホモフィリーやヘテロフィリーに応じて自動的に伝播・凝集過程を変更できる新しい伝播機構を提案する。
論文 参考訳(メタデータ) (2021-12-27T08:19:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。