A Global Medical Data Security and Privacy Preserving Standards Identification Framework for Electronic Healthcare Consumers
- URL: http://arxiv.org/abs/2410.03621v1
- Date: Fri, 4 Oct 2024 17:22:55 GMT
- Title: A Global Medical Data Security and Privacy Preserving Standards Identification Framework for Electronic Healthcare Consumers
- Authors: Vinaytosh Mishra, Kishu Gupta, Deepika Saxena, Ashutosh Kumar Singh,
- Abstract summary: Different countries have varying standards for the security and privacy of medical data.
This paper proposed a novel and comprehensive framework to standardize these rules globally.
- Score: 2.57177976232483
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Electronic Health Records (EHR) are crucial for the success of digital healthcare, with a focus on putting consumers at the center of this transformation. However, the digitalization of healthcare records brings along security and privacy risks for personal data. The major concern is that different countries have varying standards for the security and privacy of medical data. This paper proposed a novel and comprehensive framework to standardize these rules globally, bringing them together on a common platform. To support this proposal, the study reviews existing literature to understand the research interest in this issue. It also examines six key laws and standards related to security and privacy, identifying twenty concepts. The proposed framework utilized K-means clustering to categorize these concepts and identify five key factors. Finally, an Ordinal Priority Approach is applied to determine the preferred implementation of these factors in the context of EHRs. The proposed study provides a descriptive then prescriptive framework for the implementation of privacy and security in the context of electronic health records. Therefore, the findings of the proposed framework are useful for professionals and policymakers in improving the security and privacy associated with EHRs.
Related papers
- The Gradient of Health Data Privacy [15.417809900388262]
This paper introduces a novel "privacy gradient" approach to health data governance.
Our multidimensional concept considers factors such as data sensitivity, stakeholder relationships, purpose of use, and temporal aspects.
We demonstrate how this approach can address critical privacy challenges in diverse healthcare settings worldwide.
arXiv Detail & Related papers (2024-10-01T17:35:18Z) - Law-based and standards-oriented approach for privacy impact assessment in medical devices: a topic for lawyers, engineers and healthcare practitioners in MedTech [0.0]
The adoption of non-binding standards like ISO and IEC can harmonize processes by enhancing accountability privacy by design.
The study advocates for leveraging both hard law and standards to systematically address privacy and safety in the design and operation of medical devices.
arXiv Detail & Related papers (2024-09-18T09:56:19Z) - A Qualitative Analysis Framework for mHealth Privacy Practices [0.0]
This paper introduces a novel framework for the qualitative evaluation of privacy practices in mHealth apps.
Our investigation encompasses an analysis of 152 leading mHealth apps on the Android platform.
Our findings indicate persistent issues with negligence and misuse of sensitive user information.
arXiv Detail & Related papers (2024-05-28T08:57:52Z) - Assessing Mobile Application Privacy: A Quantitative Framework for Privacy Measurement [0.0]
This work aims to contribute to a digital environment that prioritizes privacy, promotes informed decision-making, and endorses the privacy-preserving design principles.
The purpose of this framework is to systematically evaluate the level of privacy risk when using particular Android applications.
arXiv Detail & Related papers (2023-10-31T18:12:19Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
The Italian National Health Service is adopting Artificial Intelligence through its technical agencies.
Such a vast programme requires special care in formalising the knowledge domain.
Questions have been raised about the impact that AI could have on patients, practitioners, and health systems.
arXiv Detail & Related papers (2023-04-24T08:00:02Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
We present a detailed review of current practices and state-of-the-art methodologies in the field of differential privacy (DP)
Key points and high-level contents of the article were originated from the discussions from "Differential Privacy (DP): Challenges Towards the Next Frontier"
This article aims to provide a reference point for the algorithmic and design decisions within the realm of privacy, highlighting important challenges and potential research directions.
arXiv Detail & Related papers (2023-04-14T05:29:18Z) - DeID-GPT: Zero-shot Medical Text De-Identification by GPT-4 [80.36535668574804]
We develop a novel GPT4-enabled de-identification framework (DeID-GPT")
Our developed DeID-GPT showed the highest accuracy and remarkable reliability in masking private information from the unstructured medical text.
This study is one of the earliest to utilize ChatGPT and GPT-4 for medical text data processing and de-identification.
arXiv Detail & Related papers (2023-03-20T11:34:37Z) - User-Centric Health Data Using Self-sovereign Identities [69.50862982117127]
This article presents the potential use of the issuers Self-Sovereign Identities (SSI) and Distributed Ledger Technologies (DLT) to improve the privacy and control of health data.
The paper lists the prominent use cases of decentralized identities in the health area, and discusses an effective blockchain-based architecture.
arXiv Detail & Related papers (2021-07-26T17:09:52Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Application of Intelligent Multi Agent Based Systems For E-Healthcare
Security [0.0]
In recent years, availability and usage of extensive systems for Electronic Healthcare Record (EHR) is increased.
In order to enhance the standard of the services provided in healthcare, these records where shared and can be used by various users depends on their requirements.
notable issues in the security and privacy where obtained which should be monitored and removed.
A novel Intelligent-based Access Control Security Model (IBAC) based on multi agents is proposed to maintain and support the security and privacy of E-healthcare systems.
arXiv Detail & Related papers (2020-04-02T20:53:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.