Symmetric-Cyclic Bidirectional Quantum Teleportation of Bell-like State via Entanglement-Swapping
- URL: http://arxiv.org/abs/2410.03709v1
- Date: Thu, 26 Sep 2024 17:21:50 GMT
- Title: Symmetric-Cyclic Bidirectional Quantum Teleportation of Bell-like State via Entanglement-Swapping
- Authors: Nikhita Singh, Ravi S Singh,
- Abstract summary: Quantum teleportation is a primitive protocol for exchanging quantum information in a quantum network.
We propose a scheme wherein Bell-like states are being exchanged simultaneously in cyclic sequence.
Based upon communication- and operation- complexity, we compare our protocol with other equivalent protocols and found that the intrinsic efficiency of our protocol is maximum pegging at 33.33%.
- Score: 0.2302001830524133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum teleportation is a primitive foundational protocol for exchanging quantum information in a quantum network as well as infrastructural operational strategy in the measurement-based quantum computation. Designing an efficient scheme for quantum teleportation is a vibrant field of intensive research. We propose a scheme wherein Bell-like states are being exchanged simultaneously in cyclic sequence, i.e., symmetric-cyclic bi-directional quantum teleportation, amongst three communicating parties forming a quantum network, Alice, Bob and Charlie via entanglement-swapping with the aid of a cluster of three maximally entangled GHZ-states as the quantum channel. Moreover, based upon communication- and operation- complexity, we compare our protocol with other equivalent protocols and found that the intrinsic efficiency of our protocol is maximum pegging at 33.33%.
Related papers
- Distributed Quantum Simulation [13.11934294941432]
We propose communication-efficient distributed quantum simulation protocols.
Our protocols are shown to be optimal by deriving a lower bound on the quantum communication complexity.
Our work paves the way for achieving a practical quantum advantage by scalable quantum simulation.
arXiv Detail & Related papers (2024-11-05T07:48:40Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - An Optimized Bidirectional Quantum Teleportation Scheme with the use of
Bell states [0.0]
Bidirectional quantum teleportation scheme is a two-way quantum communication process.
In this paper, we have designed an optimal scheme for bidirectional quantum teleportation scheme.
arXiv Detail & Related papers (2021-12-08T08:17:59Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Quantum teleportation is a reversal of quantum measurement [0.0]
We introduce a generalized concept of quantum teleportation in the framework of quantum measurement and reversing operation.
Our framework makes it possible to find an optimal protocol for quantum teleportation enabling a faithful transfer of unknown quantum states.
arXiv Detail & Related papers (2021-04-25T15:03:08Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Entangled state generation via quantum walks with multiple coins [2.471925498075058]
Entanglement swapping provides an efficient method to generate entanglement in quantum communication protocols.
We propose a novel scheme to generate entangled state including two-qubit entangled state, two-qudit entangled state, three-qubit GHZ state and three-qudit GHZ state between several designate parties via the model of quantum walks with multiple coins.
arXiv Detail & Related papers (2020-11-03T11:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.