論文の概要: Khattat: Enhancing Readability and Concept Representation of Semantic Typography
- arxiv url: http://arxiv.org/abs/2410.03748v1
- Date: Tue, 1 Oct 2024 18:42:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 16:40:48.993730
- Title: Khattat: Enhancing Readability and Concept Representation of Semantic Typography
- Title(参考訳): Khattat: セマンティックタイポグラフィの可読性と概念表現の強化
- Authors: Ahmed Hussein, Alaa Elsetohy, Sama Hadhoud, Tameem Bakr, Yasser Rohaim, Badr AlKhamissi,
- Abstract要約: セマンティックタイポグラフィーは、アイデアを選択し、適切なフォントを選択し、創造性と可読性のバランスをとる。
このプロセスを自動化するエンドツーエンドシステムを導入します。
鍵となる機能はOCRベースの損失関数で、読みやすさを高め、複数の文字の同時スタイリングを可能にする。
- 参考スコア(独自算出の注目度): 0.3994968615706021
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Designing expressive typography that visually conveys a word's meaning while maintaining readability is a complex task, known as semantic typography. It involves selecting an idea, choosing an appropriate font, and balancing creativity with legibility. We introduce an end-to-end system that automates this process. First, a Large Language Model (LLM) generates imagery ideas for the word, useful for abstract concepts like freedom. Then, the FontCLIP pre-trained model automatically selects a suitable font based on its semantic understanding of font attributes. The system identifies optimal regions of the word for morphing and iteratively transforms them using a pre-trained diffusion model. A key feature is our OCR-based loss function, which enhances readability and enables simultaneous stylization of multiple characters. We compare our method with other baselines, demonstrating great readability enhancement and versatility across multiple languages and writing scripts.
- Abstract(参考訳): 可読性を維持しながら単語の意味を視覚的に伝達する表現型タイポグラフィーを設計することは、意味型タイポグラフィ(semantic typography)として知られる複雑なタスクである。
アイデアの選択、適切なフォントの選択、クリエイティビティとレジリエビリティのバランスを含む。
このプロセスを自動化するエンドツーエンドシステムを導入します。
まず、LLM(Large Language Model)は、自由のような抽象概念に有用な、単語のイメージアイデアを生成する。
次に、FontCLIP事前学習モデルは、フォント属性の意味的理解に基づいて、適切なフォントを自動的に選択する。
本システムは,モーフィングのための単語の最適領域を特定し,事前学習した拡散モデルを用いて反復変換する。
鍵となる機能はOCRベースの損失関数であり、読みやすさを高め、複数の文字の同時スタイリングを可能にする。
提案手法を他のベースラインと比較し,複数の言語にまたがる可読性向上と汎用性を実証し,スクリプトを作成する。
関連論文リスト
- GRIF-DM: Generation of Rich Impression Fonts using Diffusion Models [18.15911470339845]
我々は、特定の印象を鮮明に具現化するフォントを生成するための拡散法である「usmethod」を導入する。
MyFontsデータセットを用いて,本手法が現実的で活気があり,高忠実なフォントを生成可能であることを確認した。
論文 参考訳(メタデータ) (2024-08-14T02:26:46Z) - FontCLIP: A Semantic Typography Visual-Language Model for Multilingual
Font Applications [27.609008096617057]
FontCLIPは、大きな視覚言語モデルの意味的理解とタイポグラフィー的知識を結びつけるモデルである。
タイポグラフィー固有の知識を事前学習したCLIPモデルの包括的視覚言語知識に統合する。
FontCLIPの双対モダリティと一般化能力は多言語・多言語フォントの検索と文字形状の最適化を可能にする。
論文 参考訳(メタデータ) (2024-03-11T06:08:16Z) - VQ-Font: Few-Shot Font Generation with Structure-Aware Enhancement and
Quantization [52.870638830417]
本稿では,VQGANベースのフレームワーク(VQ-Font)を提案する。
具体的には、コードブック内でフォントトークンをカプセル化するために、VQGANを事前訓練する。その後、VQ-Fontは、合成したグリフをコードブックで洗練し、合成されたストロークと実世界のストロークのドメインギャップをなくす。
論文 参考訳(メタデータ) (2023-08-27T06:32:20Z) - Text Descriptions are Compressive and Invariant Representations for
Visual Learning [63.3464863723631]
本研究では,クラスごとの複数の視覚的特徴に対する人間の理解に則って,頑健な数ショット学習環境では魅力的な性能が得られることを示す。
特に,SLR-AVD (Sparse Logistic Regression using Augmented Visual Descriptors) という新しい手法を導入する。
このメソッドはまず、まず大きな言語モデル(LLM)を介して各クラスの複数の視覚的記述を自動生成し、次にVLMを使用してこれらの記述を各画像の視覚的特徴埋め込みに変換し、最後に、これらの特徴の関連するサブセットを選択するためにスパースロジスティック回帰を使用する。
論文 参考訳(メタデータ) (2023-07-10T03:06:45Z) - DGFont++: Robust Deformable Generative Networks for Unsupervised Font
Generation [19.473023811252116]
教師なしフォント生成のための頑健な変形可能な生成ネットワークを提案する(略してDGFont++)。
異なるスタイルを区別するために、我々はマルチタスク判別器を用いてモデルを訓練し、それぞれのスタイルを独立して識別できるようにした。
実験により,本モデルは最先端手法よりも高品質なキャラクタ画像を生成することができることが示された。
論文 参考訳(メタデータ) (2022-12-30T14:35:10Z) - SLOGAN: Handwriting Style Synthesis for Arbitrary-Length and
Out-of-Vocabulary Text [35.83345711291558]
本稿では,任意の長文と語彙外文に対して,パラメータ化および制御可能な手書きスタイルを合成する手法を提案する。
我々は、容易に入手可能な印刷スタイルの画像を提供することで、テキストコンテンツを埋め込むことにより、コンテンツの多様性を柔軟に達成することができる。
本手法は,学習語彙に含まれない単語を,様々な新しいスタイルで合成することができる。
論文 参考訳(メタデータ) (2022-02-23T12:13:27Z) - Generating More Pertinent Captions by Leveraging Semantics and Style on
Multi-Source Datasets [56.018551958004814]
本稿では,データソースの非一様結合をトレーニングすることで,流動的な記述を生成するタスクに対処する。
ノイズの多い画像とテキストのペアを持つ大規模データセットは、サブ最適の監視源を提供する。
本稿では,検索コンポーネントから抽出したスタイルトークンとキーワードを組み込むことにより,セマンティクスと記述スタイルを活用・分離することを提案する。
論文 参考訳(メタデータ) (2021-11-24T19:00:05Z) - Scalable Font Reconstruction with Dual Latent Manifolds [55.29525824849242]
タイポグラフィー解析とフォント再構成を行う深層生成モデルを提案する。
このアプローチによって、効果的にモデル化できるキャラクタの種類を大規模にスケールアップすることが可能になります。
多くの言語の文字タイプを表す様々なデータセット上でフォント再構成のタスクを評価する。
論文 参考訳(メタデータ) (2021-09-10T20:37:43Z) - A Multi-Implicit Neural Representation for Fonts [79.6123184198301]
エッジやコーナーのようなフォント固有の不連続性は、ニューラルネットワークを使って表現することが難しい。
そこで我々は,フォントを文順に表現するためのtextitmulti-implicitsを導入する。
論文 参考訳(メタデータ) (2021-06-12T21:40:11Z) - Accurate Word Representations with Universal Visual Guidance [55.71425503859685]
本稿では,視覚指導から従来の単語埋め込みを視覚的に強調する視覚的表現法を提案する。
各単語が多様な関連画像に対応するマルチモーダルシードデータセットから,小型の単語画像辞書を構築する。
12の自然言語理解および機械翻訳タスクの実験により,提案手法の有効性と一般化能力がさらに検証された。
論文 参考訳(メタデータ) (2020-12-30T09:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。