Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction
- URL: http://arxiv.org/abs/2410.03802v2
- Date: Wed, 29 Jan 2025 08:19:32 GMT
- Title: Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction
- Authors: Giuseppe Alessio D'Inverno, Saeid Moradizadeh, Sajad Salavatidezfouli, Pasquale Claudio Africa, Gianluigi Rozza,
- Abstract summary: Graph Neural Networks (GNNs) exploit the natural graph structure of the mesh obtained by the Finite Volume (FV) discretization.
Our experimental validation framework yields promising results, confirming our method as a valid alternative that overcomes the curse of dimensionality.
- Score: 0.0
- License:
- Abstract: The complexity of the cardiovascular system needs to be accurately reproduced in order to promptly acknowledge health conditions; to this aim, advanced multifidelity and multiphysics numerical models are crucial. On one side, Full Order Models (FOMs) deliver accurate hemodynamic assessments, but their high computational demands hinder their real-time clinical application. In contrast, ROMs provide more efficient yet accurate solutions, essential for personalized healthcare and timely clinical decision-making. In this work, we explore the application of computational fluid dynamics (CFD) in cardiovascular medicine by integrating FOMs with ROMs for predicting the risk of aortic aneurysm growth and rupture. Wall Shear Stress (WSS) and the Oscillatory Shear Index (OSI), sampled at different growth stages of the thoracic aortic aneurysm, are predicted by means of Graph Neural Networks (GNNs). GNNs exploit the natural graph structure of the mesh obtained by the Finite Volume (FV) discretization, taking into account the spatial local information, regardless of the dimension of the input graph. Our experimental validation framework yields promising results, confirming our method as a valid alternative that overcomes the curse of dimensionality.
Related papers
- Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers [43.17768785084301]
We train an amortized neural posterior estimator on a newly built large dataset of cardiac simulations.
We incorporate elements modeling effects to better align simulated data with real-world measurements.
The proposed framework can further integrate in-vivo data sources to refine its predictive capabilities on real-world data.
arXiv Detail & Related papers (2024-12-23T13:05:17Z) - Deep vectorised operators for pulsatile hemodynamics estimation in coronary arteries from a steady-state prior [2.3971720731010766]
We propose a time-efficient surrogate model, powered by machine learning, for the estimation of pulsatile hemodynamics.
We show that our model produces accurate estimates of the pulsatile velocity and pressure while being agnostic to re-sampling of the source domain.
arXiv Detail & Related papers (2024-10-15T12:24:50Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on the Artery Wall [13.113110989699571]
We consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models.
We employ group equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes.
We show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions.
arXiv Detail & Related papers (2022-12-09T18:16:06Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Continuous Forecasting via Neural Eigen Decomposition of Stochastic
Dynamics [47.82509795873254]
We introduce the Neural Eigen-SDE (NESDE) algorithm for sequential prediction with sparse observations and adaptive dynamics.
NESDE applies eigen-decomposition to the dynamics model to allow efficient frequent predictions given sparse observations.
We are the first to provide a patient-adapted prediction for blood coagulation following Heparin dosing in the MIMIC-IV dataset.
arXiv Detail & Related papers (2022-01-31T22:16:50Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
This study introduces physics-informed neural networks (PINNs) as a means to perform myocardial perfusion MR quantification.
PINNs can be trained to fit the observed perfusion MR data while respecting the underlying physical conservation laws.
arXiv Detail & Related papers (2020-11-25T16:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.