論文の概要: Text-guided Diffusion Model for 3D Molecule Generation
- arxiv url: http://arxiv.org/abs/2410.03803v1
- Date: Fri, 4 Oct 2024 10:23:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 16:10:45.619050
- Title: Text-guided Diffusion Model for 3D Molecule Generation
- Title(参考訳): 3次元分子生成のためのテキスト誘導拡散モデル
- Authors: Yanchen Luo, Junfeng Fang, Sihang Li, Zhiyuan Liu, Jiancan Wu, An Zhang, Wenjie Du, Xiang Wang,
- Abstract要約: 本研究では,3次元拡散モデルを用いたテキスト誘導型小型分子生成手法であるTextSMOGを紹介する。
この方法は、テキスト条件を用いて分子生成を誘導し、安定性と多様性を両立させる。
実験結果から,テキスト記述から情報を取得し,活用するためのTextSMOGの有効性が示された。
- 参考スコア(独自算出の注目度): 26.09786612721824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The de novo generation of molecules with targeted properties is crucial in biology, chemistry, and drug discovery. Current generative models are limited to using single property values as conditions, struggling with complex customizations described in detailed human language. To address this, we propose the text guidance instead, and introduce TextSMOG, a new Text-guided Small Molecule Generation Approach via 3D Diffusion Model which integrates language and diffusion models for text-guided small molecule generation. This method uses textual conditions to guide molecule generation, enhancing both stability and diversity. Experimental results show TextSMOG's proficiency in capturing and utilizing information from textual descriptions, making it a powerful tool for generating 3D molecular structures in response to complex textual customizations.
- Abstract(参考訳): 標的となる性質を持つ分子のデノボ生成は、生物学、化学、薬物発見において重要である。
現在の生成モデルは、特定のプロパティ値を条件として使用することに限定されており、詳細な人間の言語で記述された複雑なカスタマイズに苦慮している。
そこで本論文では,テキストガイドと3次元拡散モデルを用いたテキスト誘導小分子生成手法であるTextSMOGを提案する。
この方法は、テキスト条件を用いて分子生成を誘導し、安定性と多様性を両立させる。
実験の結果,TextSMOGはテキスト記述から情報を取得し,活用する能力を示し,複雑なテキストのカスタマイズに対応する3次元分子構造を生成する強力なツールとなった。
関連論文リスト
- Crossing New Frontiers: Knowledge-Augmented Large Language Model Prompting for Zero-Shot Text-Based De Novo Molecule Design [0.0]
本研究は,ゼロショットテキスト条件デノボ分子生成タスクにおいて,大規模言語モデル(LLM)の知識増進プロンプトの利用について検討する。
本フレームワークは,ベンチマークデータセット上でのSOTA(State-of-the-art)ベースラインモデルの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-18T11:37:19Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
テキスト条件付き分子生成のための遅延拡散モデル LDMol を提案する。
LDMolは、学習可能で構造的に有意な特徴空間を生成する分子オートエンコーダを含む。
我々は,LDMolを分子間検索やテキスト誘導分子編集などの下流タスクに適用できることを示す。
論文 参考訳(メタデータ) (2024-05-28T04:59:13Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
本稿では,学生に類似した多制約分子生成大言語モデルTSMMGを紹介する。
TSMMGを訓練するために、これらの「教師」から分子知識を抽出し、大量のテキスト-分子対を構築する。
我々は,TSMMGが複雑で自然言語で記述された特性を満たす分子を生成できることを実験的に明らかにした。
論文 参考訳(メタデータ) (2024-03-20T02:15:55Z) - 3M-Diffusion: Latent Multi-Modal Diffusion for Language-Guided Molecular Structure Generation [18.55127917150268]
3M拡散は、新しいマルチモーダルな分子グラフ生成法である。
望ましい性質を持つ多様な、理想的には新しい分子構造を生成する。
論文 参考訳(メタデータ) (2024-03-11T21:44:54Z) - Interactive Molecular Discovery with Natural Language [69.89287960545903]
対象分子を記述・編集するための自然言語を用いた対話型分子設計を提案する。
この課題をより良くするために、実験プロパティ情報を注入することによって強化された知識的で汎用的な生成事前学習モデルChatMolを設計する。
論文 参考訳(メタデータ) (2023-06-21T02:05:48Z) - MolXPT: Wrapping Molecules with Text for Generative Pre-training [141.0924452870112]
MolXPTは、テキストでラップされたSMILESで事前訓練されたテキストと分子の統一言語モデルである。
MolXPT は MoleculeNet 上での分子特性予測の強いベースラインを上回ります。
論文 参考訳(メタデータ) (2023-05-18T03:58:19Z) - Multi-modal Molecule Structure-text Model for Text-based Retrieval and
Editing [107.49804059269212]
分子の化学構造とテキスト記述を共同で学習し, マルチモーダルな分子構造テキストモデル, MoleculeSTMを提案する。
実験において、分子STMは、新しい生化学的概念を創出するための最先端の一般化能力を得る。
論文 参考訳(メタデータ) (2022-12-21T06:18:31Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Translation between Molecules and Natural Language [43.518805086280466]
本稿では,未ラベルの自然言語テキストや分子文字列の事前学習のための自己教師型学習フレームワークを提案する。
$textbfMolT5$は、分子キャプションやテキストベースのdenovo分子生成など、従来の視覚言語タスクの新しい、有用な、挑戦的なアナログを可能にする。
論文 参考訳(メタデータ) (2022-04-25T17:48:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。