Text-guided Diffusion Model for 3D Molecule Generation
- URL: http://arxiv.org/abs/2410.03803v1
- Date: Fri, 4 Oct 2024 10:23:20 GMT
- Title: Text-guided Diffusion Model for 3D Molecule Generation
- Authors: Yanchen Luo, Junfeng Fang, Sihang Li, Zhiyuan Liu, Jiancan Wu, An Zhang, Wenjie Du, Xiang Wang,
- Abstract summary: We introduce TextSMOG, a new Text-guided Small Molecule Generation Approach via 3D Diffusion Model.
This method uses textual conditions to guide molecule generation, enhancing both stability and diversity.
Experimental results show TextSMOG's proficiency in capturing and utilizing information from textual descriptions.
- Score: 26.09786612721824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The de novo generation of molecules with targeted properties is crucial in biology, chemistry, and drug discovery. Current generative models are limited to using single property values as conditions, struggling with complex customizations described in detailed human language. To address this, we propose the text guidance instead, and introduce TextSMOG, a new Text-guided Small Molecule Generation Approach via 3D Diffusion Model which integrates language and diffusion models for text-guided small molecule generation. This method uses textual conditions to guide molecule generation, enhancing both stability and diversity. Experimental results show TextSMOG's proficiency in capturing and utilizing information from textual descriptions, making it a powerful tool for generating 3D molecular structures in response to complex textual customizations.
Related papers
- Mol-CADiff: Causality-Aware Autoregressive Diffusion for Molecule Generation [13.401822039640297]
Mol-CADiff is a novel diffusion-based framework that uses causal attention mechanisms for text-conditional molecular generation.
Our approach explicitly models the causal relationship between textual prompts and molecular structures, overcoming key limitations in existing methods.
Our experiments demonstrate that Mol-CADiff outperforms state-of-the-art methods in generating diverse, novel, and chemically valid molecules.
arXiv Detail & Related papers (2025-03-07T15:10:37Z) - Crossing New Frontiers: Knowledge-Augmented Large Language Model Prompting for Zero-Shot Text-Based De Novo Molecule Design [0.0]
Our study explores the use of knowledge-augmented prompting of large language models (LLMs) for the zero-shot text-conditional de novo molecular generation task.
Our framework proves effective, outperforming state-of-the-art (SOTA) baseline models on benchmark datasets.
arXiv Detail & Related papers (2024-08-18T11:37:19Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
We introduce a multi-constraint molecular generation large language model, TSMMG, akin to a student.
To train TSMMG, we construct a large set of text-molecule pairs by extracting molecular knowledge from these 'teachers'
We experimentally show that TSMMG remarkably performs in generating molecules meeting complex, natural language-described property requirements.
arXiv Detail & Related papers (2024-03-20T02:15:55Z) - 3M-Diffusion: Latent Multi-Modal Diffusion for Language-Guided Molecular Structure Generation [18.55127917150268]
3M-Diffusion is a novel multi-modal molecular graph generation method.
It generates diverse, ideally novel molecular structures with desired properties.
arXiv Detail & Related papers (2024-03-11T21:44:54Z) - Interactive Molecular Discovery with Natural Language [69.89287960545903]
We propose the conversational molecular design, a novel task adopting natural language for describing and editing target molecules.
To better accomplish this task, we design ChatMol, a knowledgeable and versatile generative pre-trained model, enhanced by injecting experimental property information.
arXiv Detail & Related papers (2023-06-21T02:05:48Z) - MolXPT: Wrapping Molecules with Text for Generative Pre-training [141.0924452870112]
MolXPT is a unified language model of text and molecules pre-trained on SMILES wrapped by text.
MolXPT outperforms strong baselines of molecular property prediction on MoleculeNet.
arXiv Detail & Related papers (2023-05-18T03:58:19Z) - Multi-modal Molecule Structure-text Model for Text-based Retrieval and
Editing [107.49804059269212]
We present a multi-modal molecule structure-text model, MoleculeSTM, by jointly learning molecules' chemical structures and textual descriptions.
In experiments, MoleculeSTM obtains the state-of-the-art generalization ability to novel biochemical concepts.
arXiv Detail & Related papers (2022-12-21T06:18:31Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Translation between Molecules and Natural Language [43.518805086280466]
We present a self-supervised learning framework for pretraining models on a vast amount of unlabeled natural language text and molecule strings.
$textbfMolT5$ allows for new, useful, and challenging analogs of traditional vision-language tasks, such as molecule captioning and text-based de novo molecule generation.
arXiv Detail & Related papers (2022-04-25T17:48:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.