Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement
- URL: http://arxiv.org/abs/2410.03838v1
- Date: Fri, 4 Oct 2024 18:06:12 GMT
- Title: Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement
- Authors: Joseph Andress, Alexander Engel, Yuan Shi, Scott Parker,
- Abstract summary: We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
- Score: 42.896772730859645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations (ODEs), which may be generated from partial differential equations in plasma physics. We map a dynamical system to a Hamiltonian form, where the Hamiltonian matrix is a function of dynamical variables. To advance in time, we measure expectation values from the previous time step, and evaluate the Hamiltonian function classically, which introduces stochasticity into the dynamics. We then perform standard quantum Hamiltonian simulation over a short time, using the evaluated constant Hamiltonian matrix. This approach requires evolving an ensemble of quantum states, which are consumed each step to measure required observables. We apply this approach to the classic logistic and Lorenz systems, in both integrable and chaotic regimes. Out analysis shows that solutions' accuracy is influenced by both the stochastic sampling rate and the nature of the dynamical system.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - The cost of solving linear differential equations on a quantum computer: fast-forwarding to explicit resource counts [0.0]
We give the first non-asymptotic computation of the cost of encoding the solution to general linear ordinary differential equations into quantum states.
We show that the stability properties of a large class of classical dynamics allow their fast-forwarding.
We find that the history state can always be output with complexity $O(T1/2)$ for any stable linear system.
arXiv Detail & Related papers (2023-09-14T17:25:43Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Quantum simulation of discrete linear dynamical systems and simple
iterative methods in linear algebra via Schrodingerisation [32.104513049339936]
We introduce the quantum Jacobi and quantum power methods for solving the quantum linear systems of equations.
The proposed quantum simulation can be performed on either discrete-variable quantum systems or on hybrid continuous-variable and discrete-variable quantum systems.
arXiv Detail & Related papers (2023-04-06T04:55:15Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Stochastic Path Integral Analysis of the Continuously Monitored Quantum
Harmonic Oscillator [0.0]
We deduce the evolution equations for position and momentum expectation values and the covariance matrix elements from the system's characteristic function.
Our results provide insights into the time dependence of the system during the measurement process, motivating their importance for quantum measurement engine/refrigerator experiments.
arXiv Detail & Related papers (2021-03-10T15:04:49Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - A Dyson equation approach for averaging of classical and quantum
observables on multiple realizations of Markov processes [0.0]
Time dependent signals are often the result of an ensemble average over many microscopical dynamical processes.
We present a numerical approach that can potentially be used to solve such time evolution problems.
We benchmark it against a Monte Carlo simulations of the same problems.
arXiv Detail & Related papers (2020-04-01T21:30:50Z) - Direct reconstruction of the quantum master equation dynamics of a
trapped ion qubit [0.0]
We introduce a method that reconstructs the dynamical equation of open quantum systems, directly from a set of expectation values of selected observables.
We benchmark our technique both by a simulation and experimentally, by measuring the dynamics of a trapped $88textSr+$ ion under spontaneous photon scattering.
arXiv Detail & Related papers (2020-03-10T13:09:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.