Exponential Quantum Speedup for Simulating Classical Lattice Dynamics
- URL: http://arxiv.org/abs/2504.05453v1
- Date: Mon, 07 Apr 2025 19:41:22 GMT
- Title: Exponential Quantum Speedup for Simulating Classical Lattice Dynamics
- Authors: Xiantao Li,
- Abstract summary: We introduce a rigorous quantum framework for simulating general harmonic lattice dynamics.<n>We exploit well established quantum Hamiltonian simulation techniques.<n>We demonstrate the applicability of the method across a broad class of lattice models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulating large scale lattice dynamics directly is computationally demanding due to the high complexity involved, yet such simulations are crucial for understanding the mechanical and thermal properties of many physical systems. In this work, we introduce a rigorous quantum framework for simulating general harmonic lattice dynamics by reformulating the classical equations as a time dependent Schr\"odinger equation governed by a sparse Hamiltonian. This transformation allows us to exploit well established quantum Hamiltonian simulation techniques, offering an exponential speedup with respect to the number of atoms $N$. The overall complexity has a logarithmic dependence on $N$, and linear dependence on both the simulation time $T$ and the Debye frequency $\omega_D$. Key to our approach is the application of the matrix valued Fej\'er Riesz theorem to the phonon dynamical matrix, which facilitates the efficient construction of the underlying Hamiltonian with translational invariance. We demonstrate the applicability of the method across a broad class of lattice models.
Related papers
- Truncated Gaussian basis approach for simulating many-body dynamics [0.0]
The approach constructs an effective Hamiltonian within a reduced subspace, spanned by fermionic Gaussian states, and diagonalizes it to obtain approximate eigenstates and eigenenergies.
Symmetries can be exploited to perform parallel computation, enabling to simulate systems with much larger sizes.
For quench dynamics we observe that time-evolving wave functions in the truncated subspace facilitates the simulation of long-time dynamics.
arXiv Detail & Related papers (2024-10-05T15:47:01Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Time Dependent Hamiltonian Simulation Using Discrete Clock Constructions [42.3779227963298]
We provide a framework for encoding time dependent dynamics as time independent systems.
First, we create a time dependent simulation algorithm based on performing qubitization on the augmented clock system.
Second, we define a natural generalization of multiproduct formulas for time-ordered exponentials.
arXiv Detail & Related papers (2022-03-21T21:29:22Z) - Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics and
Superconvergence for Schr\"odinger Equation [2.973326951020451]
We propose a simple quantum algorithm for simulating highly oscillatory quantum dynamics.
To our knowledge, this is the first quantum algorithm that is both insensitive to the rapid changes of the time-dependent Hamiltonian and exhibits commutator scaling.
For the simulation of the Schr"odinger equation, our method exhibits superconvergence and achieves a surprising second order convergence rate.
arXiv Detail & Related papers (2021-11-04T18:50:36Z) - Efficient Fully-Coherent Quantum Signal Processing Algorithms for
Real-Time Dynamics Simulation [3.3917542048743865]
We develop fully-coherent simulation algorithms based on quantum signal processing (QSP)
We numerically analyze these algorithms by applying them to the simulation of spin dynamics of the Heisenberg model.
arXiv Detail & Related papers (2021-10-21T17:56:33Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum algorithm for time-dependent Hamiltonian simulation by
permutation expansion [6.338178373376447]
We present a quantum algorithm for the dynamical simulation of time-dependent Hamiltonians.
We demonstrate that the cost of the algorithm is independent of the Hamiltonian's frequencies.
arXiv Detail & Related papers (2021-03-29T05:02:02Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.