論文の概要: TrustEMG-Net: Using Representation-Masking Transformer with U-Net for Surface Electromyography Enhancement
- arxiv url: http://arxiv.org/abs/2410.03843v1
- Date: Tue, 8 Oct 2024 16:50:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 16:00:59.457541
- Title: TrustEMG-Net: Using Representation-Masking Transformer with U-Net for Surface Electromyography Enhancement
- Title(参考訳): TrustEMG-Net: 表面筋電図強調のためのU-Netを用いた表現マスク変換器
- Authors: Kuan-Chen Wang, Kai-Chun Liu, Ping-Cheng Yeh, Sheng-Yu Peng, Yu Tsao,
- Abstract要約: 本稿では、TrustEMG-Netと呼ばれる新しいニューラルネットワーク(NN)ベースのsEMG復調手法を提案する。
TrustEMG-Net は既存の sEMG Denoising 手法と比較して 20% の最小改善を実現している。
- 参考スコア(独自算出の注目度): 14.421826563179101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surface electromyography (sEMG) is a widely employed bio-signal that captures human muscle activity via electrodes placed on the skin. Several studies have proposed methods to remove sEMG contaminants, as non-invasive measurements render sEMG susceptible to various contaminants. However, these approaches often rely on heuristic-based optimization and are sensitive to the contaminant type. A more potent, robust, and generalized sEMG denoising approach should be developed for various healthcare and human-computer interaction applications. This paper proposes a novel neural network (NN)-based sEMG denoising method called TrustEMG-Net. It leverages the potent nonlinear mapping capability and data-driven nature of NNs. TrustEMG-Net adopts a denoising autoencoder structure by combining U-Net with a Transformer encoder using a representation-masking approach. The proposed approach is evaluated using the Ninapro sEMG database with five common contamination types and signal-to-noise ratio (SNR) conditions. Compared with existing sEMG denoising methods, TrustEMG-Net achieves exceptional performance across the five evaluation metrics, exhibiting a minimum improvement of 20%. Its superiority is consistent under various conditions, including SNRs ranging from -14 to 2 dB and five contaminant types. An ablation study further proves that the design of TrustEMG-Net contributes to its optimality, providing high-quality sEMG and serving as an effective, robust, and generalized denoising solution for sEMG applications.
- Abstract(参考訳): 表面筋電図 (Surface Electromyography, SEMG) は、皮膚に電極を置いてヒトの筋活動を捉える生体信号である。
様々な汚染物質に感受性を持つsEMGを非侵襲的な測定によって処理することにより、sEMG汚染物質を除去する方法が提案されている。
しかしながら、これらのアプローチはしばしばヒューリスティックな最適化に依存し、汚染物質の種類に敏感である。
より強力で堅牢で一般化されたsEMGデノベーションアプローチは、様々な医療や人間とコンピュータのインタラクションアプリケーションのために開発されるべきである。
本稿では、TrustEMG-Netと呼ばれる新しいニューラルネットワーク(NN)ベースのsEMG復調手法を提案する。
NNの強力な非線形マッピング機能とデータ駆動性を活用する。
TrustEMG-Net では,U-Net と Transformer のエンコーダを表現・マスキング方式で組み合わせ,デノナイズするオートエンコーダ構造を採用している。
提案手法は,5種類の共通汚染型とSNR条件を有するNinapro sEMGデータベースを用いて評価した。
既存のsEMGデノベーション手法と比較して、TrustEMG-Netは5つの評価指標で例外的な性能を達成し、20%の最小改善を示した。
その優越性は、-14から2dBと5種の汚染物質を含む様々な条件下で一貫している。
アブレーション研究では、TrustEMG-Netの設計がその最適性に貢献し、高品質なsEMGを提供し、sEMGアプリケーションのための効果的で堅牢で一般化されたデノナイズソリューションとして機能することを証明している。
関連論文リスト
- A Non-Intrusive Neural Quality Assessment Model for Surface Electromyography Signals [19.894088480632217]
本研究では,SEMG信号のSNRを予測する新しい非侵入モデルQASE-netを提案する。
実験フレームワークは,2つのオープンアクセスデータベースから実世界のsEMGとECGデータを利用する。
論文 参考訳(メタデータ) (2024-02-08T08:23:33Z) - SDEMG: Score-based Diffusion Model for Surface Electromyographic Signal
Denoising [15.472398279233515]
表面筋電図(sEMG)記録は、監視される筋肉が心臓に近いときに心電図(ECG)信号に影響される。
本稿では,SDEMGと呼ばれる新しい手法を提案し,SEMG信号デノイングのためのスコアベース拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-02-06T08:48:39Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
高磁場, 高分解能, 高信号-雑音比 (SNR) 磁気共鳴イメージング (MRI) 画像を得るために, GAN (Cycle Consistent Generative Adversarial Network) が実装されている。
Denoising Autoencoder(DAE)とCycle-GANをペアとアンペアのケースで訓練するために画像が使用された。
この研究は、古典的DAEを上回り、低磁場MRI画像を改善することができ、画像ペアを必要としない生成的ディープラーニングモデルの使用を実証する。
論文 参考訳(メタデータ) (2023-07-12T00:01:00Z) - Generalizable synthetic MRI with physics-informed convolutional networks [57.628770497971246]
物理インフォームド・ディープ・ラーニング(Deep Learning-based)法を開発し,複数の脳磁気共鳴画像(MRI)のコントラストを1つの5分間の取得から合成する。
我々は、任意のコントラストに一般化し、ニューロイメージングプロトコルを加速する能力について検討する。
論文 参考訳(メタデータ) (2023-05-21T21:16:20Z) - Multiresolution Dual-Polynomial Decomposition Approach for Optimized
Characterization of Motor Intent in Myoelectric Control Systems [0.8122953016935794]
表面筋電図(sEMG)は、幅広いバイオメディカル応用の生理的信号である。
パターン認識(PR)に基づく制御方式におけるsEMGの使用は主に、その豊富な運動情報の内容と非侵襲性に起因する。
マルチクラスEMG信号の適切な復調と再構成のためのMRDPIによる多分解能分解法を提案する。
論文 参考訳(メタデータ) (2022-11-10T14:42:11Z) - ECG Artifact Removal from Single-Channel Surface EMG Using Fully
Convolutional Networks [9.468136300919062]
本研究は,完全畳み込みネットワーク(FCN)を用いた単一チャネルsEMG信号からECGアーチファクトを除去する新しい復号法を提案する。
提案手法は,SEMGデノナイズのためのニューラルネットワークのデノエーズオートエンコーダ構造と強力な非線形マッピング機能を採用する。
論文 参考訳(メタデータ) (2022-10-24T14:12:11Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
敵攻撃は、様々なアルゴリズムやフレームワークでディープニューラルネットワーク(DNN)を妨害する。
本稿では,GDMP ( Guided diffusion model for purification) と呼ばれる新しい精製法を提案する。
様々なデータセットにわたる包括的実験において,提案したGDMPは,敵対的攻撃によって引き起こされた摂動を浅い範囲に減少させることを示した。
論文 参考訳(メタデータ) (2022-05-30T10:11:15Z) - A Regularization Method to Improve Adversarial Robustness of Neural
Networks for ECG Signal Classification [1.8579693774597703]
心電図(Electrocardiogram、ECG)は、ヒトの心臓の状態をモニターする最も広く用いられる診断ツールである。
ECG信号のディープニューラルネットワーク(DNN)解釈は、患者の心臓の潜在的な異常を1秒で識別するために完全に自動化することができる。
DNNは、DNNの入力に微妙な変化をもたらす敵の雑音に対して非常に脆弱であり、間違ったクラスラベル予測をもたらす可能性がある。
本稿では,ECG信号分類の適用のために,ノイズ-信号比(NSR)の観点から頑健性を改善するための正規化手法を提案する。
論文 参考訳(メタデータ) (2021-10-19T06:22:02Z) - DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for
Uncertainty Inference [52.899219617256655]
本稿では、ディープニューラルネットワーク(DNN)に基づく画像認識において、ベイズ推定に基づく不確実性推論(UI)を改善するための二重教師付き不確実性推論(DS-UI)フレームワークを提案する。
DS-UIでは、最後の完全連結(FC)層とガウス混合モデル(MoGMM)を組み合わせ、MoGMM-FC層を得る。
実験の結果,DS-UIは誤分類検出において最先端のUI手法よりも優れていた。
論文 参考訳(メタデータ) (2020-11-17T12:35:02Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。