Quantum Approximate Optimization Algorithm and Quantum-enhanced Markov Chain Monte Carlo: A Hybrid Approach to Data Assimilation in 4DVAR
- URL: http://arxiv.org/abs/2410.03853v1
- Date: Fri, 4 Oct 2024 18:37:35 GMT
- Title: Quantum Approximate Optimization Algorithm and Quantum-enhanced Markov Chain Monte Carlo: A Hybrid Approach to Data Assimilation in 4DVAR
- Authors: Abhiram Sripat,
- Abstract summary: We propose a novel hybrid quantum-classical framework to tackle the computational challenges in Four-Dimensional Variational Data Assimilation (4D VAR)
Our approach, the Quantum Variational Particle Filter (QVPF), uses QAOA to optimize particle proposals and QMCMC to efficiently compute particle weights and resample, accelerating convergence while reducing the computational load.
The hybrid model offers enhanced accuracy by integrating quantum algorithms into the variational particle filter, making it particularly suited for applications in climate modeling, space weather prediction, and defense.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel hybrid quantum-classical framework that integrates the Quantum Approximate Optimization Algorithm (QAOA) and Quantum-enhanced Markov Chain Monte Carlo (QMCMC) with variational particle filters to tackle the computational challenges in Four-Dimensional Variational Data Assimilation (4DVAR). 4DVAR, widely used in numerical weather prediction, suffers from inefficiencies in high-dimensional, non-linear systems. Our approach, the Quantum Variational Particle Filter (QVPF), uses QAOA to optimize particle proposals and QMCMC to efficiently compute particle weights and resample, accelerating convergence while reducing the computational load. The QVPF framework addresses the curse of dimensionality by minimizing the number of particles required for accurate state estimation, thus improving efficiency in systems with complex dynamics. The hybrid model offers enhanced accuracy by integrating quantum algorithms into the variational particle filter, making it particularly suited for applications in climate modeling, space weather prediction, and defense. The potential for achieving unprecedented resolution in predictive models could transform sectors that rely on high-resolution forecasting. We present the mathematical foundations of the approach, along with discussions on algorithmic implementation and hardware requirements. Early results suggest that this hybrid framework could significantly improve data assimilation, with future implementations on near-term quantum devices offering a practical pathway for scaling up. This work demonstrates how quantum computing can address the growing need for more accurate and computationally feasible methods in large-scale data assimilation.
Related papers
- NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers [1.7400502482492273]
In recent years, the field of quantum computing has become significantly more mature.
We present an auto-encoded VQE with neural-network predictions: NN-AE-VQE.
We demonstrate these methods on a $H$ molecule, achieving chemical accuracy.
arXiv Detail & Related papers (2024-11-23T23:09:22Z) - Classical Pre-optimization Approach for ADAPT-VQE: Maximizing the Potential of High-Performance Computing Resources to Improve Quantum Simulation of Chemical Applications [0.6361348748202732]
We report the implementation and performance of ADAPT-VQE with our sparse wavefunction circuit solver (SWCS)
The SWCS can be tuned to balance computational cost and accuracy, which extends the application of ADAPT-VQE for molecular electronic structure calculations.
By pre-optimizing a quantum simulation with a parameterized ansatz generated with ADAPT-VQE/SWCS, we aim to utilize the power of classical high-performance computing.
arXiv Detail & Related papers (2024-11-12T16:52:31Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Greedy Gradient-free Adaptive Variational Quantum Algorithms on a Noisy
Intermediate Scale Quantum Computer [0.632231271751641]
Hybrid quantum-classical adaptive Variational Quantum Eigensolvers (VQE) hold the potential to outperform classical computing for quantum many-body systems.
New techniques to execute adaptive algorithms on a 25-qubit error-mitigated QPU to a GPU-accelerated HPC simulator are presented.
arXiv Detail & Related papers (2023-06-29T17:58:02Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.
We present a different approach, which employs optimization techniques, similar to those used in neural architecture search and AutoML.
The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Hybrid quantum variational algorithm for simulating open quantum systems
with near-term devices [0.0]
Hybrid quantum-classical (HQC) algorithms make it possible to use near-term quantum devices supported by classical computational resources.
We develop an HQC algorithm using an efficient variational optimization approach to simulate open system dynamics.
arXiv Detail & Related papers (2020-08-12T13:49:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.