NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers
- URL: http://arxiv.org/abs/2411.15667v1
- Date: Sat, 23 Nov 2024 23:09:22 GMT
- Title: NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers
- Authors: Koen Mesman, Yinglu Tang, Matthias Moller, Boyang Chen, Sebastian Feld,
- Abstract summary: In recent years, the field of quantum computing has become significantly more mature.
We present an auto-encoded VQE with neural-network predictions: NN-AE-VQE.
We demonstrate these methods on a $H$ molecule, achieving chemical accuracy.
- Score: 1.7400502482492273
- License:
- Abstract: A longstanding computational challenge is the accurate simulation of many-body particle systems. Especially for deriving key characteristics of high-impact but complex systems such as battery materials and high entropy alloys (HEA). While simple models allow for simulations of the required scale, these methods often fail to capture the complex dynamics that determine the characteristics. A long-theorized approach is to use quantum computers for this purpose, which allows for a more efficient encoding of quantum mechanical systems. In recent years, the field of quantum computing has become significantly more mature. Furthermore, the rise in integration of machine learning with quantum computing further pushes to a near-term advantage. In this work we aim to improve the well-established quantum computing method for calculating the inter-atomic potential, the variational quantum eigensolver, by presenting an auto-encoded VQE with neural-network predictions: NN-AE-VQE. We apply a quantum autoencoder for a compressed quantum state representation of the atomic system, to which a naive circuit ansatz is applied. This reduces the number of circuit parameters to optimize, while still minimal reduction in accuracy. Additionally, we train a classical neural network to predict the circuit parameters to avoid computationally expensive parameter optimization. We demonstrate these methods on a $H_2$ molecule, achieving chemical accuracy. We believe this method shows promise of efficiently capturing highly accurate systems while omitting current bottlenecks of variational quantum algorithms. Finally, we explore options for exploiting the algorithm structure and further algorithm improvements.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Resonant Dimensionality Reduction and Its Application in Quantum Machine Learning [2.7119354495508787]
We propose a quantum resonant dimension reduction (QRDR) algorithm based on the quantum resonant transition to reduce the dimension of input data.
After QRDR, the dimension of input data $N$ can be reduced into desired scale $R$, and the effective information of the original data will be preserved.
Our algorithm has the potential to be utilized in a variety of computing fields.
arXiv Detail & Related papers (2024-05-21T09:26:18Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Learning To Optimize Quantum Neural Network Without Gradients [3.9848482919377006]
We introduce a novel meta-optimization algorithm that trains a emphmeta-optimizer network to output parameters for the quantum circuit.
We show that we achieve a better quality minima in fewer circuit evaluations than existing gradient based algorithms on different datasets.
arXiv Detail & Related papers (2023-04-15T01:09:12Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Identification of topological phases using classically-optimized
variational quantum eigensolver [0.6181093777643575]
Variational quantum eigensolver (VQE) is regarded as a promising candidate of hybrid quantum-classical algorithm for quantum computers.
We propose classically-optimized VQE (co-VQE), where the whole process of the optimization is efficiently conducted on a classical computer.
In co-VQE, we only use quantum computers to measure nonlocal quantities after the parameters are optimized.
arXiv Detail & Related papers (2022-02-07T02:26:58Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors.
We realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological phases of a spin model characterized by a non-zero string order parameter.
We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.
arXiv Detail & Related papers (2021-09-13T12:32:57Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - A Neural-Network Variational Quantum Algorithm for Many-Body Dynamics [15.435967947933404]
We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems.
The proposed algorithm can be efficiently implemented in near-term quantum computers with low measurement cost.
arXiv Detail & Related papers (2020-08-31T02:54:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.