Leveraging Fundamental Analysis for Stock Trend Prediction for Profit
- URL: http://arxiv.org/abs/2410.03913v1
- Date: Fri, 4 Oct 2024 20:36:19 GMT
- Title: Leveraging Fundamental Analysis for Stock Trend Prediction for Profit
- Authors: John Phan, Hung-Fu Chang,
- Abstract summary: This paper investigates the application of machine learning models, Long Short-Term Memory (LSTM), one-dimensional Convolutional Neural Networks (1D CNN), and Logistic Regression (LR) for predicting stock trends based on fundamental analysis.
We employ key financial ratios and the Discounted Cash Flow (DCF) model to formulate two prediction tasks: Annual Stock Price Difference (ASPD) and Difference between Current Stock Price and Intrinsic Value (CSPDIV)
Our results demonstrate that LR models outperform CNN and LSTM models, achieving an average test accuracy of 74.66% for ASPD and 72.85% for DCSPIV
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the application of machine learning models, Long Short-Term Memory (LSTM), one-dimensional Convolutional Neural Networks (1D CNN), and Logistic Regression (LR), for predicting stock trends based on fundamental analysis. Unlike most existing studies that predominantly utilize technical or sentiment analysis, we emphasize the use of a company's financial statements and intrinsic value for trend forecasting. Using a dataset of 269 data points from publicly traded companies across various sectors from 2019 to 2023, we employ key financial ratios and the Discounted Cash Flow (DCF) model to formulate two prediction tasks: Annual Stock Price Difference (ASPD) and Difference between Current Stock Price and Intrinsic Value (DCSPIV). These tasks assess the likelihood of annual profit and current profitability, respectively. Our results demonstrate that LR models outperform CNN and LSTM models, achieving an average test accuracy of 74.66% for ASPD and 72.85% for DCSPIV. This study contributes to the limited literature on integrating fundamental analysis into machine learning for stock prediction, offering valuable insights for both academic research and practical investment strategies. By leveraging fundamental data, our approach highlights the potential for long-term stock trend prediction, supporting portfolio managers in their decision-making processes.
Related papers
- Comparative Analysis of LSTM, GRU, and Transformer Models for Stock Price Prediction [0.9217021281095907]
This paper takes AI driven stock price trend prediction as the core research.
It makes a model training data set of famous Tesla cars from 2015 to 2024, and compares LSTM, GRU, and Transformer Models.
The experimental results show that the accuracy of the LSTM model is 94%.
arXiv Detail & Related papers (2024-10-20T14:00:58Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - Explainable Post hoc Portfolio Management Financial Policy of a Deep Reinforcement Learning agent [44.99833362998488]
We develop a novel Explainable Deep Reinforcement Learning (XDRL) approach for portfolio management.
By executing our methodology, we can interpret in prediction time the actions of the agent to assess whether they follow the requisites of an investment policy.
arXiv Detail & Related papers (2024-07-19T17:40:39Z) - Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning [0.0]
The study builds upon existing literature on stock price prediction methods, emphasizing the shift toward machine learning and deep learning approaches.
Using historical stock prices of 180 stocks across 18 sectors listed on the NSE, India, the LSTM model predicts future prices.
Results demonstrate the efficacy of the LSTM model in accurately predicting stock prices and informing investment decisions.
arXiv Detail & Related papers (2024-05-28T17:55:54Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
We present a groundbreaking framework for financial market analysis.
This approach is the first to jointly model investor expectations and automatically mine latent stock relationships.
Our model consistently achieves an annual return exceeding 10%.
arXiv Detail & Related papers (2023-06-01T01:36:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Machine Learning for Stock Prediction Based on Fundamental Analysis [13.920569652186714]
We investigate three machine learning algorithms: Feed-forward Neural Network (FNN), Random Forest (RF) and Adaptive Neural Fuzzy Inference System (ANFIS)
RF model achieves the best prediction results, and feature selection is able to improve test performance of FNN and ANFIS.
Our findings demonstrate that machine learning models could be used to aid fundamental analysts with decision-making regarding stock investment.
arXiv Detail & Related papers (2022-01-26T18:48:51Z) - Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model [1.2891210250935146]
We present a deep learning-based regression model built on a long-and-short-term memory network (LSTM) network.
It extracts historical stock prices based on a stock's ticker name for a specified pair of start and end dates, and forecasts the future stock prices.
We deploy the model on 75 significant stocks chosen from 15 critical sectors of the Indian stock market.
arXiv Detail & Related papers (2021-04-06T11:09:51Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.