Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model
- URL: http://arxiv.org/abs/2104.06259v1
- Date: Tue, 6 Apr 2021 11:09:51 GMT
- Title: Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model
- Authors: Jaydip Sen, Abhishek Dutta, Sidra Mehtab
- Abstract summary: We present a deep learning-based regression model built on a long-and-short-term memory network (LSTM) network.
It extracts historical stock prices based on a stock's ticker name for a specified pair of start and end dates, and forecasts the future stock prices.
We deploy the model on 75 significant stocks chosen from 15 critical sectors of the Indian stock market.
- Score: 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing robust systems for precise prediction of future prices of stocks
has always been considered a very challenging research problem. Even more
challenging is to build a system for constructing an optimum portfolio of
stocks based on the forecasted future stock prices. We present a deep
learning-based regression model built on a long-and-short-term memory network
(LSTM) network that automatically scraps the web and extracts historical stock
prices based on a stock's ticker name for a specified pair of start and end
dates, and forecasts the future stock prices. We deploy the model on 75
significant stocks chosen from 15 critical sectors of the Indian stock market.
For each of the stocks, the model is evaluated for its forecast accuracy.
Moreover, the predicted values of the stock prices are used as the basis for
investment decisions, and the returns on the investments are computed.
Extensive results are presented on the performance of the model. The analysis
of the results demonstrates the efficacy and effectiveness of the system and
enables us to compare the profitability of the sectors from the point of view
of the investors in the stock market.
Related papers
- Leveraging Fundamental Analysis for Stock Trend Prediction for Profit [0.0]
This paper investigates the application of machine learning models, Long Short-Term Memory (LSTM), one-dimensional Convolutional Neural Networks (1D CNN), and Logistic Regression (LR) for predicting stock trends based on fundamental analysis.
We employ key financial ratios and the Discounted Cash Flow (DCF) model to formulate two prediction tasks: Annual Stock Price Difference (ASPD) and Difference between Current Stock Price and Intrinsic Value (CSPDIV)
Our results demonstrate that LR models outperform CNN and LSTM models, achieving an average test accuracy of 74.66% for ASPD and 72.85% for DCSPIV
arXiv Detail & Related papers (2024-10-04T20:36:19Z) - Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning [0.0]
The study builds upon existing literature on stock price prediction methods, emphasizing the shift toward machine learning and deep learning approaches.
Using historical stock prices of 180 stocks across 18 sectors listed on the NSE, India, the LSTM model predicts future prices.
Results demonstrate the efficacy of the LSTM model in accurately predicting stock prices and informing investment decisions.
arXiv Detail & Related papers (2024-05-28T17:55:54Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Machine Learning for Stock Prediction Based on Fundamental Analysis [13.920569652186714]
We investigate three machine learning algorithms: Feed-forward Neural Network (FNN), Random Forest (RF) and Adaptive Neural Fuzzy Inference System (ANFIS)
RF model achieves the best prediction results, and feature selection is able to improve test performance of FNN and ANFIS.
Our findings demonstrate that machine learning models could be used to aid fundamental analysts with decision-making regarding stock investment.
arXiv Detail & Related papers (2022-01-26T18:48:51Z) - Analysis of Sectoral Profitability of the Indian Stock Market Using an
LSTM Regression Model [0.0]
This paper presents an optimized predictive model built on long-and-short-term memory (LSTM) architecture for automatically extracting past stock prices from the web over a specified time interval.
The model is deployed for making buy and sell transactions based on its predicted results for 70 important stocks from seven different sectors listed in the National Stock Exchange (NSE) of India.
The results indicate that the model is highly accurate in predicting future stock prices.
arXiv Detail & Related papers (2021-11-09T07:50:48Z) - HIST: A Graph-based Framework for Stock Trend Forecasting via Mining
Concept-Oriented Shared Information [73.40830291141035]
Several methods were recently proposed to mine the shared information through stock concepts extracted from the Web to improve the forecasting results.
Previous work assumes the connections between stocks and concepts are stationary, and neglects the dynamic relevance between stocks and concepts.
We propose a novel stock trend forecasting framework that can adequately mine the concept-oriented shared information from predefined concepts and hidden concepts.
arXiv Detail & Related papers (2021-10-26T14:04:04Z) - A comparative study of Different Machine Learning Regressors For Stock
Market Prediction [2.1485350418225244]
We intensively studied NASDAQ stock market and targeted to choose the portfolio of ten different companies.
The objective is to compute opening price of next day stock using historical data.
To fulfill this task nine different Machine Learning regressor applied on this data and evaluated using MSE and R2 as performance metric.
arXiv Detail & Related papers (2021-04-14T15:37:33Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
We propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods.
To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts.
To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks.
arXiv Detail & Related papers (2021-02-15T07:22:09Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.