Quantum Monte Carlo Integration for Simulation-Based Optimisation
- URL: http://arxiv.org/abs/2410.03926v2
- Date: Tue, 8 Oct 2024 12:49:20 GMT
- Title: Quantum Monte Carlo Integration for Simulation-Based Optimisation
- Authors: Jingjing Cui, Philippe J. S. de Brouwer, Steven Herbert, Philip Intallura, Cahit Kargi, Georgios Korpas, Alexandre Krajenbrink, William Shoosmith, Ifan Williams, Ban Zheng,
- Abstract summary: We investigate the feasibility of integrating quantum algorithms as subroutines of simulation-based optimisation problems.
We conduct a thorough analysis of all systematic errors arising in the formulation of quantum Monte Carlo integration.
We study the applicability of quantum Monte Carlo integration for fundamental financial use cases.
- Score: 34.96100129498306
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We investigate the feasibility of integrating quantum algorithms as subroutines of simulation-based optimisation problems with relevance to and potential applications in mathematical finance. To this end, we conduct a thorough analysis of all systematic errors arising in the formulation of quantum Monte Carlo integration in order to better understand the resources required to encode various distributions such as a Gaussian, and to evaluate statistical quantities such as the Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) of an asset. Finally, we study the applicability of quantum Monte Carlo integration for fundamental financial use cases in terms of simulation-based optimisations, notably Mean-Conditional-Value-at-Risk (Mean-CVaR) and (risky) Mean-Variance (Mean-Var) optimisation problems. In particular, we study the Mean-Var optimisation problem in the presence of noise on a quantum device, and benchmark a quantum error mitigation method that applies to quantum amplitude estimation -- a key subroutine of quantum Monte Carlo integration -- showcasing the utility of such an approach.
Related papers
- PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms [4.2435928520499635]
Portfolio Optimization (PO) is a financial problem aiming to maximize the net gains while minimizing the risks in a given investment portfolio.
We propose a novel scalable framework, denoted PO-QA, to investigate the variation of quantum parameters.
Our results provide effective insights into comprehending PO from the lens of Quantum Machine Learning.
arXiv Detail & Related papers (2024-07-29T10:26:28Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - A Survey of Quantum Alternatives to Randomized Algorithms: Monte Carlo
Integration and Beyond [7.060988518771793]
We focus on the potential to obtain a quantum advantage in the computational speed of Monte Carlo procedures using quantum circuits.
We revisit the quantum algorithms that could replace classical Monte Carlo and then consider both the existing quantum algorithms and the potential quantum realizations.
arXiv Detail & Related papers (2023-03-08T23:39:49Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Markov Chain Monte-Carlo Enhanced Variational Quantum Algorithms [0.0]
We introduce a variational quantum algorithm that uses Monte Carlo techniques to place analytic bounds on its time-complexity.
We demonstrate both the effectiveness of our technique and the validity of our analysis through quantum circuit simulations for MaxCut instances.
arXiv Detail & Related papers (2021-12-03T23:03:44Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Quantum algorithm for credit valuation adjustments [0.0]
We focus on a particular one of such use cases, credit valuation adjustment (CVA), and identify opportunities and challenges towards quantum advantage for practical instances.
In minimizing the resource requirements for amplitude amplification, we adopt a recently developed Bayesian variant of quantum amplitude estimation.
We perform numerical analyses to characterize the prospect of quantum speedup in concrete CVA instances over classical Monte Carlo simulations.
arXiv Detail & Related papers (2021-05-25T17:11:20Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.