ROS2-Based Simulation Framework for Cyberphysical Security Analysis of UAVs
- URL: http://arxiv.org/abs/2410.03971v1
- Date: Fri, 4 Oct 2024 23:23:54 GMT
- Title: ROS2-Based Simulation Framework for Cyberphysical Security Analysis of UAVs
- Authors: Unmesh Patil, Akshith Gunasekaran, Rakesh Bobba, Houssam Abbas,
- Abstract summary: We present a new simulator of Uncrewed Aerial Vehicles (UAVs) that is tailored to the needs of testing cyber-physical security attacks and defenses.
Our framework has a built-in motion planner, controller, communication models and attack models.
- Score: 0.08333024746293494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new simulator of Uncrewed Aerial Vehicles (UAVs) that is tailored to the needs of testing cyber-physical security attacks and defenses. Recent investigations into UAV safety have unveiled various attack surfaces and some defense mechanisms. However, due to escalating regulations imposed by aviation authorities on security research on real UAVs, and the substantial costs associated with hardware test-bed configurations, there arises a necessity for a simulator capable of substituting for hardware experiments, and/or narrowing down their scope to the strictly necessary. The study of different attack mechanisms requires specific features in a simulator. We propose a simulation framework based on ROS2, leveraging some of its key advantages, including modularity, replicability, customization, and the utilization of open-source tools such as Gazebo. Our framework has a built-in motion planner, controller, communication models and attack models. We share examples of research use cases that our framework can enable, demonstrating its utility.
Related papers
- In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
Text-to-image (T2I) models have shown remarkable progress, but their potential to generate harmful content remains a critical concern in the ML community.
We propose ICER, a novel red-teaming framework that generates interpretable and semantic meaningful problematic prompts.
Our work provides crucial insights for developing more robust safety mechanisms in T2I systems.
arXiv Detail & Related papers (2024-11-25T04:17:24Z) - DroneWiS: Automated Simulation Testing of small Unmanned Aerial Systems in Realistic Windy Conditions [8.290044674335473]
DroneWiS allows sUAS developers to automatically simulate realistic windy conditions and test the resilience of sUAS against wind.
Unlike current state-of-the-art simulation tools such as Gazebo and AirSim, DroneWiS leverages Computational Fluid Dynamics (CFD) to compute the unique wind flows.
This simulation capability provides deeper insights to developers about the navigation capability of sUAS in challenging and realistic windy conditions.
arXiv Detail & Related papers (2024-08-29T14:25:11Z) - CARACAS: vehiCular ArchitectuRe for detAiled Can Attacks Simulation [37.89720165358964]
This paper showcases CARACAS, a vehicular model, including component control via CAN messages and attack injection capabilities.
CarACAS showcases the efficacy of this methodology, including a Battery Electric Vehicle (BEV) model, and focuses on attacks targeting torque control in two distinct scenarios.
arXiv Detail & Related papers (2024-06-11T10:16:55Z) - Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach [57.15309977293297]
The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses.
We propose a tiny machine learning-based Stackelberg game framework based on pruning techniques for efficient UT migration in UAV metaverses.
arXiv Detail & Related papers (2024-01-18T02:14:13Z) - Survey of Security Issues in Memristor-based Machine Learning Accelerators for RF Analysis [0.0]
We explore security aspects of a new computing paradigm that combines novel memristors and traditional CMOS.
Memristors have different properties than traditional CMOS which can potentially be exploited by attackers.
Mixed signal approximate computing model has different vulnerabilities than traditional digital implementations.
arXiv Detail & Related papers (2023-12-01T21:44:35Z) - Simulation of Sensor Spoofing Attacks on Unmanned Aerial Vehicles Using
the Gazebo Simulator [4.383011485317949]
This paper investigates possible attacks that can be simulated, and then performing their simulations.
Attacks targeting the LiDAR and GPS components of unmanned aerial vehicles can be simulated.
Messages with arbitrary values can be spoofed to the corresponding topics, which allows attackers to update relevant parameters and cause a potential crash of a vehicle.
arXiv Detail & Related papers (2023-09-18T10:34:32Z) - A Requirements-Driven Platform for Validating Field Operations of Small
Uncrewed Aerial Vehicles [48.67061953896227]
DroneReqValidator (DRV) allows sUAS developers to define the operating context, configure multi-sUAS mission requirements, specify safety properties, and deploy their own custom sUAS applications in a high-fidelity 3D environment.
The DRV Monitoring system collects runtime data from sUAS and the environment, analyzes compliance with safety properties, and captures violations.
arXiv Detail & Related papers (2023-07-01T02:03:49Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
Small unmanned aircraft systems (sUAS) are becoming prominent components of many humanitarian assistance and disaster response operations.
We have developed the free and open-source ADAPT multi-mission payload for deploying real-time AI and computer vision onboard a sUAS.
We demonstrate the example mission of real-time, in-flight ice segmentation to monitor river ice state and provide timely predictions of catastrophic flooding events.
arXiv Detail & Related papers (2022-01-25T14:51:19Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - Learning to Fly -- a Gym Environment with PyBullet Physics for
Reinforcement Learning of Multi-agent Quadcopter Control [0.0]
We propose an open-source environment for multiple quadcopters based on the Bullet physics engine.
Its multi-agent and vision based reinforcement learning interfaces, as well as the support of realistic collisions and aerodynamic effects, make it, to the best of our knowledge, a first of its kind.
arXiv Detail & Related papers (2021-03-03T02:47:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.