Implicit Bias of Mirror Descent for Shallow Neural Networks in Univariate Regression
- URL: http://arxiv.org/abs/2410.03988v1
- Date: Sat, 5 Oct 2024 00:43:09 GMT
- Title: Implicit Bias of Mirror Descent for Shallow Neural Networks in Univariate Regression
- Authors: Shuang Liang, Guido Montúfar,
- Abstract summary: We show that mirror flow exhibits lazy training and has the same implicit bias as ordinary gradient flow when the network width tends to infinity.
For networks with absolute value activations, we show that mirror flow with scaled potentials induces a rich class of biases, which generally cannot be captured by an RKHS norm.
- Score: 24.3887959016133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We examine the implicit bias of mirror flow in univariate least squares error regression with wide and shallow neural networks. For a broad class of potential functions, we show that mirror flow exhibits lazy training and has the same implicit bias as ordinary gradient flow when the network width tends to infinity. For ReLU networks, we characterize this bias through a variational problem in function space. Our analysis includes prior results for ordinary gradient flow as a special case and lifts limitations which required either an intractable adjustment of the training data or networks with skip connections. We further introduce scaled potentials and show that for these, mirror flow still exhibits lazy training but is not in the kernel regime. For networks with absolute value activations, we show that mirror flow with scaled potentials induces a rich class of biases, which generally cannot be captured by an RKHS norm. A takeaway is that whereas the parameter initialization determines how strongly the curvature of the learned function is penalized at different locations of the input space, the scaled potential determines how the different magnitudes of the curvature are penalized.
Related papers
- Implicit Bias of Gradient Descent for Two-layer ReLU and Leaky ReLU
Networks on Nearly-orthogonal Data [66.1211659120882]
The implicit bias towards solutions with favorable properties is believed to be a key reason why neural networks trained by gradient-based optimization can generalize well.
While the implicit bias of gradient flow has been widely studied for homogeneous neural networks (including ReLU and leaky ReLU networks), the implicit bias of gradient descent is currently only understood for smooth neural networks.
arXiv Detail & Related papers (2023-10-29T08:47:48Z) - The Implicit Bias of Minima Stability in Multivariate Shallow ReLU
Networks [53.95175206863992]
We study the type of solutions to which gradient descent converges when used to train a single hidden-layer multivariate ReLU network with the quadratic loss.
We prove that although shallow ReLU networks are universal approximators, stable shallow networks are not.
arXiv Detail & Related papers (2023-06-30T09:17:39Z) - The Double-Edged Sword of Implicit Bias: Generalization vs. Robustness
in ReLU Networks [64.12052498909105]
We study the implications of the implicit bias of gradient flow on generalization and adversarial robustness in ReLU networks.
In two-layer ReLU networks gradient flow is biased towards solutions that generalize well, but are highly vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-03-02T18:14:35Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Support Vectors and Gradient Dynamics for Implicit Bias in ReLU Networks [45.886537625951256]
We study gradient flow dynamics in the parameter space when training single-neuron ReLU networks.
Specifically, we discover implicit bias in terms of support vectors in ReLU networks, which play a key role in why and how ReLU networks generalize well.
arXiv Detail & Related papers (2022-02-11T08:55:58Z) - Training invariances and the low-rank phenomenon: beyond linear networks [44.02161831977037]
We show that when one trains a deep linear network with logistic or exponential loss on linearly separable data, the weights converge to rank-$1$ matrices.
This is the first time a low-rank phenomenon is proven rigorously for nonlinear ReLU-activated feedforward networks.
Our proof relies on a specific decomposition of the network into a multilinear function and another ReLU network whose weights are constant under a certain parameter directional convergence.
arXiv Detail & Related papers (2022-01-28T07:31:19Z) - A Unifying View on Implicit Bias in Training Linear Neural Networks [31.65006970108761]
We study the implicit bias of gradient flow (i.e., gradient descent with infinitesimal step size) on linear neural network training.
We propose a tensor formulation of neural networks that includes fully-connected, diagonal, and convolutional networks as special cases.
arXiv Detail & Related papers (2020-10-06T06:08:35Z) - You say Normalizing Flows I see Bayesian Networks [11.23030807455021]
We show that normalizing flows reduce to Bayesian networks with a pre-defined topology and a learnable density at each node.
We show that stacking multiple transformations in a normalizing flow relaxes independence assumptions and entangles the model distribution.
We prove the non-universality of the affine normalizing flow, regardless of its depth.
arXiv Detail & Related papers (2020-06-01T11:54:50Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.