論文の概要: RetCompletion:High-Speed Inference Image Completion with Retentive Network
- arxiv url: http://arxiv.org/abs/2410.04056v2
- Date: Wed, 04 Dec 2024 03:28:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:04:56.036031
- Title: RetCompletion:High-Speed Inference Image Completion with Retentive Network
- Title(参考訳): RetCompletion:Retentive Networkを用いた高速推論画像補完
- Authors: Yueyang Cang, Pingge Hu, Xiaoteng Zhang, Xingtong Wang, Yuhang Liu, Li Shi,
- Abstract要約: 時間コストは、高品質な多元画像補完を実現する上で大きな課題である。
画像からコンテキスト情報を統合する双方向シーケンス情報融合モデルであるBi-RetNetを導入する。
我々は一方向の画素単位の更新戦略を用いて、一貫した画像構造を復元し、高い再構成品質と高速な推論速度を実現する。
- 参考スコア(独自算出の注目度): 5.653665971685822
- License:
- Abstract: Time cost is a major challenge in achieving high-quality pluralistic image completion. Recently, the Retentive Network (RetNet) in natural language processing offers a novel approach to this problem with its low-cost inference capabilities. Inspired by this, we apply RetNet to the pluralistic image completion task in computer vision. We present RetCompletion, a two-stage framework. In the first stage, we introduce Bi-RetNet, a bidirectional sequence information fusion model that integrates contextual information from images. During inference, we employ a unidirectional pixel-wise update strategy to restore consistent image structures, achieving both high reconstruction quality and fast inference speed. In the second stage, we use a CNN for low-resolution upsampling to enhance texture details. Experiments on ImageNet and CelebA-HQ demonstrate that our inference speed is 10$\times$ faster than ICT and 15$\times$ faster than RePaint. The proposed RetCompletion significantly improves inference speed and delivers strong performance.
- Abstract(参考訳): 時間コストは、高品質な多元画像補完を実現する上で大きな課題である。
近年,自然言語処理におけるRetentive Network (RetNet) は,低コストな推論機能を備えた新しいアプローチを提供している。
そこで我々はRetNetをコンピュータビジョンにおける多元的画像補完タスクに適用した。
RetCompletionは2段階のフレームワークです。
まず,画像からコンテキスト情報を統合する双方向シーケンス情報融合モデルBi-RetNetを紹介する。
推論中に一方向の画素単位の更新戦略を用いて、一貫した画像構造を復元し、高い再構成品質と高速な推論速度を実現する。
第2段階では,CNNを用いて低分解能アップサンプリングを行い,テクスチャの詳細を向上する。
ImageNetとCelebA-HQの実験では、推論速度がICTより10$\times$、RePaintより15$\times$速いことが示されています。
提案されたRetCompletionは推論速度を大幅に改善し、強力なパフォーマンスを提供する。
関連論文リスト
- ConsisSR: Delving Deep into Consistency in Diffusion-based Image Super-Resolution [28.945663118445037]
実世界の超解像(Real-ISR)は、未知の複雑な劣化によって劣化した低品質(LQ)入力から高品質(HQ)イメージを復元することを目的としている。
セマンティックとピクセルレベルの整合性を扱うためにConsisSRを導入する。
論文 参考訳(メタデータ) (2024-10-17T17:41:52Z) - GAMA-IR: Global Additive Multidimensional Averaging for Fast Image Restoration [22.53813258871828]
高速かつ優れた画質が得られる画像復元ネットワークを導入する。
このネットワークは、標準GPU上で実行されるレイテンシとメモリ消費を最小限に抑えるように設計されている。
我々は、現実のSIDDにおける最先端の結果を0.11dBで上回り、より2倍から10倍速くする。
論文 参考訳(メタデータ) (2024-03-31T21:43:08Z) - Unified-Width Adaptive Dynamic Network for All-In-One Image Restoration [50.81374327480445]
本稿では, 複雑な画像劣化を基本劣化の観点で表現できる, という新しい概念を提案する。
We propose the Unified-Width Adaptive Dynamic Network (U-WADN) which consist of two pivotal components: a Width Adaptive Backbone (WAB) and a Width Selector (WS)。
提案したU-WADNは、最大32.3%のFLOPを同時に削減し、約15.7%のリアルタイム加速を実現している。
論文 参考訳(メタデータ) (2024-01-24T04:25:12Z) - SPIRE: Semantic Prompt-Driven Image Restoration [66.26165625929747]
セマンティック・復元型画像復元フレームワークであるSPIREを開発した。
本手法は,復元強度の量的仕様を言語ベースで記述することで,より詳細な指導を支援する最初のフレームワークである。
本実験は, SPIREの修復性能が, 現状と比較して優れていることを示すものである。
論文 参考訳(メタデータ) (2023-12-18T17:02:30Z) - CoSeR: Bridging Image and Language for Cognitive Super-Resolution [74.24752388179992]
本稿では,低解像度画像の理解能力を備えたSRモデルを実現するCoSeR(Cognitive Super-Resolution)フレームワークを提案する。
画像の外観と言語理解を組み合わせることで、認知的な埋め込みを生成する。
画像の忠実度をさらに向上させるため、「オール・イン・アテンション」と呼ばれる新しい条件注入方式を提案する。
論文 参考訳(メタデータ) (2023-11-27T16:33:29Z) - Multi-Prior Learning via Neural Architecture Search for Blind Face
Restoration [61.27907052910136]
Blind Face Restoration (BFR)は、高品質な顔画像から高品質な顔画像を復元することを目的としている。
1)手動チューニングを伴わない強力なネットワークアーキテクチャの導出方法,2) 複数の顔前者からの補完情報を1つのネットワークで取得して復元性能を向上させる方法,の2つの大きな課題がある。
特定検索空間内において,適切な特徴抽出アーキテクチャを適応的に探索する顔復元検索ネットワーク(FRSNet)を提案する。
論文 参考訳(メタデータ) (2022-06-28T12:29:53Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Multi-Stage Progressive Image Restoration [167.6852235432918]
本稿では、これらの競合する目標を最適にバランスできる新しい相乗的設計を提案する。
本提案では, 劣化した入力の復元関数を段階的に学習する多段階アーキテクチャを提案する。
MPRNetという名前の密接な相互接続型マルチステージアーキテクチャは、10のデータセットに対して強力なパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2021-02-04T18:57:07Z) - Deep Artifact-Free Residual Network for Single Image Super-Resolution [0.2399911126932526]
本研究では,残差学習の利点と,地中構造像を目標として用いることの利点を活かしたDAFR(Deep Artifact-Free Residual)ネットワークを提案する。
我々のフレームワークは、高品質な画像再構成に必要な高周波情報を抽出するために、ディープモデルを用いている。
実験の結果,提案手法は既存の手法に比べて定量的,定性的な画像品質を実現することがわかった。
論文 参考訳(メタデータ) (2020-09-25T20:53:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。