論文の概要: LoRTA: Low Rank Tensor Adaptation of Large Language Models
- arxiv url: http://arxiv.org/abs/2410.04060v2
- Date: Tue, 15 Oct 2024 16:03:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 14:20:57.505439
- Title: LoRTA: Low Rank Tensor Adaptation of Large Language Models
- Title(参考訳): LoRTA: 大規模言語モデルの低ランクテンソル適応
- Authors: Ignacio Hounie, Charilaos Kanatsoulis, Arnuv Tandon, Alejandro Ribeiro,
- Abstract要約: Low Rank Adaptation (LoRA) は、下流タスクのための大規模な事前学習モデルに効果的に適応する、PEFT (Efficient Fine Tuning) 手法として人気がある。
モデル更新に低階テンソルパラメトリゼーションを用いる新しい手法を提案する。
提案手法は,大規模言語モデルの微調整に有効であり,比較性能を維持しつつ,パラメータ数の大幅な削減を実現している。
- 参考スコア(独自算出の注目度): 70.32218116940393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low Rank Adaptation (LoRA) is a popular Parameter Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks. LoRA parameterizes model updates using low-rank matrices at each layer, significantly reducing the number of trainable parameters and, consequently, resource requirements during fine-tuning. However, the lower bound on the number of trainable parameters remains high due to the use of the low-rank matrix model. In this paper, we address this limitation by proposing a novel approach that employs a low rank tensor parametrization for model updates. The proposed low rank tensor model can significantly reduce the number of trainable parameters, while also allowing for finer-grained control over adapter size. Our experiments on Natural Language Understanding, Instruction Tuning, Preference Optimization and Protein Folding benchmarks demonstrate that our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
- Abstract(参考訳): ローランク適応(ローランク適応、LoRA)は、下流タスクのための大規模な事前学習モデルに効果的に適応する、PEFT(パラメータ効率の良い微調整)手法である。
LoRAは各レイヤで低ランク行列を使用してモデルの更新をパラメータ化し、トレーニング可能なパラメータの数を著しく削減する。
しかし、低ランク行列モデルを用いることにより、トレーニング可能なパラメータの数に対する低い境界は高いままである。
本稿では,モデル更新に低階テンソルパラメトリゼーションを用いる新しい手法を提案する。
提案した低階テンソルモデルは、トレーニング可能なパラメータの数を著しく削減し、アダプタサイズをきめ細かな制御を可能にする。
自然言語理解, 命令チューニング, 参照最適化, タンパク質フォールディングのベンチマーク実験により, 提案手法は大規模言語モデルの微調整に有効であり, 比較性能を維持しつつ, パラメータ数の大幅な削減を実現していることが示された。
関連論文リスト
- Dynamic Subset Tuning: Expanding the Operational Range of Parameter-Efficient Training for Large Language Models [14.762222323897978]
大規模言語モデルのための新しいパラメータ効率訓練法を提案する。
従来の方法とは異なり、このサブセットはロケーションで固定されるのではなく、トレーニングの過程でどのパラメータが修正されるかである。
本手法により, モデル全体の任意の割合で, サブセットサイズをシームレスにスケーリングすることができる。
論文 参考訳(メタデータ) (2024-11-13T13:53:10Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
本研究では,事前学習した拡散モデルにおけるパラメータの重要性について検討する。
本稿では,これらの非効率パラメータをフル活用するための新しいモデル微調整法を提案する。
本手法は,下流アプリケーションにおける事前学習モデルの生成能力を向上する。
論文 参考訳(メタデータ) (2024-09-10T16:44:47Z) - Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning [38.80020737321214]
構造化非制限ランク行列(SURM)に基づく効率的なパラメータ微調整(PEFT)のためのフレームワークを提案する。
SURMは、LoRAの低ランク行列を置換しながら、様々な画像分類タスクにおいて5-7%の精度向上を実現している。
また、GLUEベンチマークでは、アダプタのパラメータ数を最大12倍に削減する(ほぼ品質が低下する)。
論文 参考訳(メタデータ) (2024-06-25T17:26:05Z) - Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation [12.07880147193174]
モデルパラメータ内のデータと圧縮可能な力学の固有な低次元構造を利用することで、計算負担を伴わずにパラメータ化の利点を享受できることが示される。
提案手法は,低ランク行列と微調整言語モデルに対して有効であることを示す。
論文 参考訳(メタデータ) (2024-06-06T14:29:49Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
生成モデルのための新しいスペクトル対応適応フレームワークを提案する。
本手法は,事前学習した重みの特異値とその基底ベクトルを調節する。
本稿では,計算効率と表現能力のバランスをとるスペクトルオーソ分解適応(SODA)を提案する。
論文 参考訳(メタデータ) (2024-05-31T17:43:35Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
低ランク適応 (LoRA) は、適応過程が本質的に低次元であるという考えに基づいている。
我々は、より高階を維持しながらトレーニング可能なパラメータを少なくするミニアンサンブルな低ランクアダプタMELoRAを提案する。
実験結果から, 自然言語理解タスクの8倍のトレーニングパラメータ, 続くタスクの36倍のトレーニングパラメータが得られた。
論文 参考訳(メタデータ) (2024-02-27T07:14:12Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
モデル性能を維持しながら計算効率のよい微調整を実現するために,様々なパラメータ効率の微調整技術が提案されている。
テンソル-トレイン分解によりトレーニング可能なパラメータを大幅に削減するフレームワークであるLoRETTAを提案する。
LoRETTAは、LLaMA-2-7Bモデルで最大100倍のパラメータで、最も広く使われているPEFT法よりも同等または優れた性能を実現している。
論文 参考訳(メタデータ) (2024-02-18T01:20:00Z) - PELA: Learning Parameter-Efficient Models with Low-Rank Approximation [16.9278983497498]
そこで本研究では,中間学習段階を導入することにより,事前学習モデルのパラメータ効率を向上させる手法を提案する。
これにより、下流の微調整タスクにローランクモデルの直接的かつ効率的な利用が可能になる。
論文 参考訳(メタデータ) (2023-10-16T07:17:33Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
下流タスクで訓練済みの大規模言語モデルを微調整することは、NLPにおいて重要なパラダイムとなっている。
重み行列のパラメータ予算をその重要度に応じて適応的に割り当てるAdaLoRAを提案する。
我々は,AdaLoRAの有効性を検証するために,自然言語処理,質問応答,自然言語生成に関する事前学習モデルを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-03-18T22:36:25Z) - LoRA: Low-Rank Adaptation of Large Language Models [71.75808607987281]
Low-Rank Adaptation (LoRA)はトレーニング済みモデルの重みを凍結し、トレーニング可能な階数分解をTransformerアーキテクチャの各層に注入する。
GPT-3では、LoRAはトレーニング可能なパラメータの数を1万倍に減らし、計算ハードウェアの要求をフル微調整の3倍に削減できる。
論文 参考訳(メタデータ) (2021-06-17T17:37:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。