論文の概要: LoRTA: Low Rank Tensor Adaptation of Large Language Models
- arxiv url: http://arxiv.org/abs/2410.04060v3
- Date: Sun, 02 Feb 2025 17:56:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:07:44.208107
- Title: LoRTA: Low Rank Tensor Adaptation of Large Language Models
- Title(参考訳): LoRTA: 大規模言語モデルの低ランクテンソル適応
- Authors: Ignacio Hounie, Charilaos Kanatsoulis, Arnuv Tandon, Alejandro Ribeiro,
- Abstract要約: Low Rank Adaptation (LoRA) は、PEFT (Efficient Fine Tuning) 法として人気がある。
よりコンパクトで柔軟な表現を可能にする高階Candecomp/Parafac(CP)分解を提案する。
本手法は,比較性能を維持しつつパラメータ数を削減できる。
- 参考スコア(独自算出の注目度): 70.32218116940393
- License:
- Abstract: Low Rank Adaptation (LoRA) is a popular Parameter Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks. LoRA parameterizes model updates using low-rank matrices at each layer, significantly reducing the number of trainable parameters and, consequently, resource requirements during fine-tuning. However, the lower bound on the number of trainable parameters remains high due to the use of the low-rank matrix model. Recent works have addressed this limitation by proposing low rank tensor parameterizations for model updates. However, they only exploit redundancy across layers, or tensorize individual matrices using ad-hoc schemes that introduce additional hyperparameters. In this work, we propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation compared to existing matrix and tensor based PEFT methods. Our experiments on Natural Language Understanding, Instruction Tuning, Preference Optimization and Protein Folding benchmarks demonstrate that our method can achieve a reduction in the number of parameters while maintaining comparable performance.
- Abstract(参考訳): 低ランク適応(ローランク適応、LoRA)は、下流タスクのための大規模な事前学習モデルに効果的に適応するパラメータ効率の良い微調整(PEFT)手法である。
LoRAは各レイヤで低ランク行列を使用してモデルの更新をパラメータ化し、トレーニング可能なパラメータの数を著しく削減する。
しかし、低ランク行列モデルを用いることにより、トレーニング可能なパラメータの数に対する低い境界は高いままである。
近年の研究では、モデル更新のための低階テンソルパラメータ化を提案することで、この制限に対処している。
しかし、レイヤー間の冗長性のみを利用するか、追加のハイパーパラメータを導入するアドホックスキームを使用して個々の行列をテンソル化する。
本研究では,既存の行列やテンソルに基づくPEFT法と比較して,よりコンパクトで柔軟な表現が可能な高階Candecomp/Parafac(CP)分解法を提案する。
自然言語理解, 指導チューニング, 優先度最適化, タンパク質フォールディングのベンチマーク実験により, 比較性能を維持しながらパラメータ数の削減が可能であることを示した。
関連論文リスト
- ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoREは、Kroneckerによって構築された超複素パラメータ化空間をAggregate Low Rank Expertsに再利用する新しいPETL法である。
巧妙な設計のおかげで、ALoREは無視できる余分なパラメータを保持し、凍ったバックボーンに強制的にマージできる。
論文 参考訳(メタデータ) (2024-12-11T12:31:30Z) - Expanding Sparse Tuning for Low Memory Usage [103.43560327427647]
メモリ使用量が少ないスパースチューニングのためのSNELL(Sparse tuning with kerNelized LoRA)法を提案する。
低メモリ使用量を達成するため、SNELLはスカラー化のための調整可能な行列を2つの学習可能な低ランク行列に分解する。
コンペティションに基づくスペーシフィケーション機構は、チューナブルウェイトインデックスの保存を避けるためにさらに提案される。
論文 参考訳(メタデータ) (2024-11-04T04:58:20Z) - NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models [26.808251361020066]
微調整された事前訓練されたモデルは、リソース集約的で厳しい。
広く採用されているPEFT技術であるLoRA(Lo-Rank Adaptation)は、事前訓練されたモデルの重量を凍結する。
NEATは、トレーニング済みの重みを入力として取り込んだ軽量ニューラルネットワークを導入し、近似累積重み更新のための非線形変換を学習する。
論文 参考訳(メタデータ) (2024-10-02T17:29:23Z) - Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning [38.80020737321214]
構造化非制限ランク行列(SURM)に基づく効率的なパラメータ微調整(PEFT)のためのフレームワークを提案する。
SURMは、LoRAの低ランク行列を置換しながら、様々な画像分類タスクにおいて5-7%の精度向上を実現している。
また、GLUEベンチマークでは、アダプタのパラメータ数を最大12倍に削減する(ほぼ品質が低下する)。
論文 参考訳(メタデータ) (2024-06-25T17:26:05Z) - Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation [12.07880147193174]
モデルパラメータ内のデータと圧縮可能な力学の固有な低次元構造を利用することで、計算負担を伴わずにパラメータ化の利点を享受できることが示される。
提案手法は,低ランク行列と微調整言語モデルに対して有効であることを示す。
論文 参考訳(メタデータ) (2024-06-06T14:29:49Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
生成モデルのための新しいスペクトル対応適応フレームワークを提案する。
本手法は,事前学習した重みの特異値とその基底ベクトルを調節する。
本稿では,計算効率と表現能力のバランスをとるスペクトルオーソ分解適応(SODA)を提案する。
論文 参考訳(メタデータ) (2024-05-31T17:43:35Z) - ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
本稿では,HypErplane Reflectionsによる高効率微調整を行うETHER変換ファミリを提案する。
特に,既存のPEFT法と極めて少ないパラメータで一致または性能を向上するEtheRと緩和ETHER+を導入する。
論文 参考訳(メタデータ) (2024-05-30T17:26:02Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
モデル性能を維持しながら計算効率のよい微調整を実現するために,様々なパラメータ効率の微調整技術が提案されている。
テンソル-トレイン分解によりトレーニング可能なパラメータを大幅に削減するフレームワークであるLoRETTAを提案する。
LoRETTAは、LLaMA-2-7Bモデルで最大100倍のパラメータで、最も広く使われているPEFT法よりも同等または優れた性能を実現している。
論文 参考訳(メタデータ) (2024-02-18T01:20:00Z) - IncreLoRA: Incremental Parameter Allocation Method for
Parameter-Efficient Fine-tuning [15.964205804768163]
IncreLoRAは、トレーニング中にトレーニング可能なパラメータを適応的に追加するインクリメンタルパラメータ割り当て手法である。
我々は,IncreLoRAの有効性を示すため,GLUEの広範な実験を行った。
論文 参考訳(メタデータ) (2023-08-23T10:08:10Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
下流タスクで訓練済みの大規模言語モデルを微調整することは、NLPにおいて重要なパラダイムとなっている。
重み行列のパラメータ予算をその重要度に応じて適応的に割り当てるAdaLoRAを提案する。
我々は,AdaLoRAの有効性を検証するために,自然言語処理,質問応答,自然言語生成に関する事前学習モデルを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-03-18T22:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。