Enhancing Graph Self-Supervised Learning with Graph Interplay
- URL: http://arxiv.org/abs/2410.04061v2
- Date: Tue, 8 Oct 2024 13:30:12 GMT
- Title: Enhancing Graph Self-Supervised Learning with Graph Interplay
- Authors: Xinjian Zhao, Wei Pang, Xiangru Jian, Yaoyao Xu, Chaolong Ying, Tianshu Yu,
- Abstract summary: Graph Interplay (GIP) is an innovative and versatile approach that significantly enhances the performance equipped with various existing GSSL methods.
GIP advocates introducing direct graph-level communications by random inter-graph edges within standard batches.
Our empirical study demonstrates that GIP surpasses the performance of prevailing GSSL methods by significant margins.
- Score: 8.775644935074407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph self-supervised learning (GSSL) has emerged as a compelling framework for extracting informative representations from graph-structured data without extensive reliance on labeled inputs. In this study, we introduce Graph Interplay (GIP), an innovative and versatile approach that significantly enhances the performance equipped with various existing GSSL methods. To this end, GIP advocates direct graph-level communications by introducing random inter-graph edges within standard batches. Against GIP's simplicity, we further theoretically show that \textsc{GIP} essentially performs a principled manifold separation via combining inter-graph message passing and GSSL, bringing about more structured embedding manifolds and thus benefits a series of downstream tasks. Our empirical study demonstrates that GIP surpasses the performance of prevailing GSSL methods across multiple benchmarks by significant margins, highlighting its potential as a breakthrough approach. Besides, GIP can be readily integrated into a series of GSSL methods and consistently offers additional performance gain. This advancement not only amplifies the capability of GSSL but also potentially sets the stage for a novel graph learning paradigm in a broader sense.
Related papers
- Unveiling Global Interactive Patterns across Graphs: Towards Interpretable Graph Neural Networks [31.29616732552006]
Graph Neural Networks (GNNs) have emerged as a prominent framework for graph mining.
This paper proposes a novel intrinsically interpretable scheme for graph classification.
Global Interactive Pattern (GIP) learning introduces learnable global interactive patterns to explicitly interpret decisions.
arXiv Detail & Related papers (2024-07-02T06:31:13Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - ExGRG: Explicitly-Generated Relation Graph for Self-Supervised Representation Learning [4.105236597768038]
Self-supervised learning has emerged as a powerful technique in pre-training deep learning models.
This paper introduces a novel non-contrastive SSL approach to Explicitly Generate a compositional Relation Graph.
arXiv Detail & Related papers (2024-02-09T19:16:04Z) - Robust Graph Structure Learning with the Alignment of Features and
Adjacency Matrix [8.711977569042865]
Many approaches have been proposed for graph structure learning (GSL) to jointly learn a clean graph structure and corresponding representations.
This paper proposes a novel regularized GSL approach, particularly with an alignment of feature information and graph information.
We conduct experiments on real-world graphs to evaluate the effectiveness of our approach.
arXiv Detail & Related papers (2023-07-05T09:05:14Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Graph Structure Learning with Variational Information Bottleneck [70.62851953251253]
We propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL.
VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks.
arXiv Detail & Related papers (2021-12-16T14:22:13Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - Graph-based Semi-supervised Learning: A Comprehensive Review [51.26862262550445]
Semi-supervised learning (SSL) has tremendous value in practice due to its ability to utilize both labeled data and unlabelled data.
An important class of SSL methods is to naturally represent data as graphs, which corresponds to graph-based semi-supervised learning (GSSL) methods.
GSSL methods have demonstrated their advantages in various domains due to their uniqueness of structure, the universality of applications, and their scalability to large scale data.
arXiv Detail & Related papers (2021-02-26T05:11:09Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.