論文の概要: Fast Object Detection with a Machine Learning Edge Device
- arxiv url: http://arxiv.org/abs/2410.04173v1
- Date: Sat, 5 Oct 2024 14:37:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 13:41:32.284798
- Title: Fast Object Detection with a Machine Learning Edge Device
- Title(参考訳): 機械学習エッジデバイスを用いた高速物体検出
- Authors: Richard C. Rodriguez, Jonah Elijah P. Bardos,
- Abstract要約: 本研究は,コンピュータビジョンを備えた組込みシステムに統合された低コストエッジデバイスについて検討する。
本研究の主な目的は、推論時間と低消費電力化である。
GoogleのCoralブランドであるEdge TPUデバイスの最終選択に、多くの情報が貢献している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This machine learning study investigates a lowcost edge device integrated with an embedded system having computer vision and resulting in an improved performance in inferencing time and precision of object detection and classification. A primary aim of this study focused on reducing inferencing time and low-power consumption and to enable an embedded device of a competition-ready autonomous humanoid robot and to support real-time object recognition, scene understanding, visual navigation, motion planning, and autonomous navigation of the robot. This study compares processors for inferencing time performance between a central processing unit (CPU), a graphical processing unit (GPU), and a tensor processing unit (TPU). CPUs, GPUs, and TPUs are all processors that can be used for machine learning tasks. Related to the aim of supporting an autonomous humanoid robot, there was an additional effort to observe whether or not there was a significant difference in using a camera having monocular vision versus stereo vision capability. TPU inference time results for this study reflect a 25% reduction in time over the GPU, and a whopping 87.5% reduction in inference time compared to the CPU. Much information in this paper is contributed to the final selection of Google's Coral brand, Edge TPU device. The Arduino Nano 33 BLE Sense Tiny ML Kit was also considered for comparison but due to initial incompatibilities and in the interest of time to complete this study, a decision was made to review the kit in a future experiment.
- Abstract(参考訳): 本研究は、コンピュータビジョンを有する組込みシステムと統合された低コストエッジデバイスを探索し、オブジェクト検出と分類の推論時間と精度の向上を実現する。
本研究の主な目的は、推論時間と低消費電力化の削減と、競争可能な自律型ヒューマノイドロボットの組み込みデバイスの実現、リアルタイム物体認識、シーン理解、視覚ナビゲーション、運動計画、ロボットの自律ナビゲーションのサポートである。
本研究では,中央処理ユニット (CPU) とグラフィカル処理ユニット (GPU) とテンソル処理ユニット (TPU) を比較した。
CPU、GPU、TPUはすべて、機械学習タスクに使用できるプロセッサである。
自律型ヒューマノイドロボットのサポートを目的として,単眼視カメラと立体視機能に有意な差があるか否かを観察する努力が加えられた。
この研究のTPU推論時間はGPUよりも25%の時間短縮であり、CPUに比べて87.5%の時間短縮を反映している。
この論文の多くの情報は、GoogleのCoralブランドであるEdge TPUデバイスの最終選択に寄与している。
Arduino Nano 33 BLE Sense Tiny ML Kitも比較対象とされたが、初期不整合性や研究に時間を要するため、将来の実験でこのキットをレビューする決定が下された。
関連論文リスト
- Audio Tagging on an Embedded Hardware Platform [20.028643659869573]
Raspberry Piなどのハードウェアにデプロイした場合,大規模な事前学習型オーディオニューラルネットワークの性能がどう変化するかを分析する。
実験の結果,連続したCPU使用量によって温度が上昇し,自動減速機構が起動できることが判明した。
マイクの品質、特にGoogle AIY Voice Kitのような安価なデバイスや音声信号のボリュームは、システムのパフォーマンスに影響を与えます。
論文 参考訳(メタデータ) (2023-06-15T13:02:41Z) - Fast GraspNeXt: A Fast Self-Attention Neural Network Architecture for
Multi-task Learning in Computer Vision Tasks for Robotic Grasping on the Edge [80.88063189896718]
アーキテクチャと計算の複雑さが高いと、組み込みデバイスへのデプロイに適さない。
Fast GraspNeXtは、ロボットグルーピングのためのコンピュータビジョンタスクに埋め込まれたマルチタスク学習に適した、高速な自己認識型ニューラルネットワークアーキテクチャである。
論文 参考訳(メタデータ) (2023-04-21T18:07:14Z) - Benchmarking Edge Computing Devices for Grape Bunches and Trunks
Detection using Accelerated Object Detection Single Shot MultiBox Deep
Learning Models [2.1922186455344796]
この研究は、オブジェクト検出のための異なるプラットフォームのパフォーマンスをリアルタイムでベンチマークする。
著者らは、自然なVineデータセットを使用して、RetinaNet ResNet-50を微調整した。
論文 参考訳(メタデータ) (2022-11-21T17:02:33Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
ディープニューラルネットワーク(DNN)レイテンシのキャラクタリゼーションは、時間を要するプロセスである。
ハードウェアデバイスの事前知識とDNNアーキテクチャのレイテンシを具体化し,MAPLEを拡張したMAPLE-Xを提案する。
論文 参考訳(メタデータ) (2022-05-25T11:08:20Z) - MAPLE-Edge: A Runtime Latency Predictor for Edge Devices [80.01591186546793]
汎用ハードウェアの最先端遅延予測器であるMAPLEのエッジデバイス指向拡張であるMAPLE-Edgeを提案する。
MAPLEと比較して、MAPLE-Edgeはより小さなCPUパフォーマンスカウンタを使用して、ランタイムとターゲットデバイスプラットフォームを記述することができる。
また、共通ランタイムを共有するデバイスプール上でトレーニングを行うMAPLEとは異なり、MAPLE-Edgeは実行時に効果的に一般化できることを示す。
論文 参考訳(メタデータ) (2022-04-27T14:00:48Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Achieving Real-Time LiDAR 3D Object Detection on a Mobile Device [53.323878851563414]
本稿では,強化学習技術を用いたネットワーク拡張とpruning検索を組み込んだコンパイラ対応統一フレームワークを提案する。
具体的には,リカレントニューラルネットワーク(RNN)を用いて,ネットワークの強化とプルーニングの両面での統一的なスキームを自動で提供する。
提案手法は,モバイルデバイス上でのリアルタイム3次元物体検出を実現する。
論文 参考訳(メタデータ) (2020-12-26T19:41:15Z) - Fast Object Segmentation Learning with Kernel-based Methods for Robotics [21.48920421574167]
オブジェクトセグメンテーションは、把握やオブジェクト操作といったタスクを実行するロボットの視覚システムにおいて重要なコンポーネントである。
本稿では,オブジェクトセグメンテーションのための新しいアーキテクチャを提案する。これはこの問題を克服し,最先端の手法で必要とされる時間に匹敵する性能を提供する。
本手法はコンピュータビジョンとロボティクスのコミュニティで広く採用されているYCB-Videoデータセットで検証されている。
論文 参考訳(メタデータ) (2020-11-25T15:07:39Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
本稿では,開発とベンチマークを統合した再現性ロボット研究の新しい概念について述べる。
このセットアップの中心的なコンポーネントの1つはDuckietown Autolabであり、これは比較的低コストで再現可能な標準化されたセットアップである。
本研究では,インフラを用いて実施した実験の再現性を解析し,ロボットのハードウェアや遠隔実験室間でのばらつきが低いことを示す。
論文 参考訳(メタデータ) (2020-09-09T15:31:29Z) - Accelerating Deep Learning Applications in Space [0.0]
拘束デバイス上でのCNNを用いた物体検出の性能について検討する。
我々は、Single Shot MultiBox Detector (SSD)とリージョンベースのFully Convolutional Network (R-FCN)について詳しく検討する。
性能は、推測時間、メモリ消費、精度で測定される。
論文 参考訳(メタデータ) (2020-07-21T21:06:30Z) - Performance Evaluation of Low-Cost Machine Vision Cameras for
Image-Based Grasp Verification [0.0]
本稿では,マシンビジョンカメラを用いた視覚に基づく把握検証システムを提案する。
実験により,選択したマシンビジョンカメラとディープラーニングモデルにより,フレーム精度97%のグルーピングを堅牢に検証できることが実証された。
論文 参考訳(メタデータ) (2020-03-23T10:34:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。