論文の概要: CS4: Measuring the Creativity of Large Language Models Automatically by Controlling the Number of Story-Writing Constraints
- arxiv url: http://arxiv.org/abs/2410.04197v1
- Date: Sat, 5 Oct 2024 15:22:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 13:31:47.768847
- Title: CS4: Measuring the Creativity of Large Language Models Automatically by Controlling the Number of Story-Writing Constraints
- Title(参考訳): CS4:ストーリー執筆制約数制御による大規模言語モデルの創造性の自動計測
- Authors: Anirudh Atmakuru, Jatin Nainani, Rohith Siddhartha Reddy Bheemreddy, Anirudh Lakkaraju, Zonghai Yao, Hamed Zamani, Haw-Shiuan Chang,
- Abstract要約: そこで本研究では,異なるレベルのプロンプト特異性を持つ新しいベンチマークデータセットCS4について紹介する。
プロンプトにおける要件/制約の数を増やすことで、迅速な特異性を高め、高品質な物語をリテリングすることを妨げることができる。
LLaMA, Gemma, Mistral に関する実験により, 異なる制約条件下で異なる LLM が全く異なる性能を示すことが示された。
- 参考スコア(独自算出の注目度): 21.237031496773284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating the creativity of large language models (LLMs) in story writing is difficult because LLM-generated stories could seemingly look creative but be very similar to some existing stories in their huge and proprietary training corpus. To overcome this challenge, we introduce a novel benchmark dataset with varying levels of prompt specificity: CS4 ($\mathbf{C}$omparing the $\mathbf{S}$kill of $\mathbf{C}$reating $\mathbf{S}$tories by $\mathbf{C}$ontrolling the $\mathbf{S}$ynthesized $\mathbf{C}$onstraint $\mathbf{S}$pecificity). By increasing the number of requirements/constraints in the prompt, we can increase the prompt specificity and hinder LLMs from retelling high-quality narratives in their training data. Consequently, CS4 empowers us to indirectly measure the LLMs' creativity without human annotations. Our experiments on LLaMA, Gemma, and Mistral not only highlight the creativity challenges LLMs face when dealing with highly specific prompts but also reveal that different LLMs perform very differently under different numbers of constraints and achieve different balances between the model's instruction-following ability and narrative coherence. Additionally, our experiments on OLMo suggest that Learning from Human Feedback (LHF) can help LLMs select better stories from their training data but has limited influence in boosting LLMs' ability to produce creative stories that are unseen in the training corpora. The benchmark is released at https://github.com/anirudhlakkaraju/cs4_benchmark.
- Abstract(参考訳): ストーリーライティングにおける大規模言語モデル(LLM)の創造性を評価するのは難しいのは、LCMの生成したストーリーは創造的に見えるが、巨大でプロプライエタリなトレーニングコーパスにある既存のストーリーと非常によく似ているためである。
CS4 ($\mathbf{C}$omparing the $\mathbf{S}$kill of $\mathbf{C}$reating $\mathbf{S}$tories by $\mathbf{C}$ontrolling the $\mathbf{S}$ynthesized $\mathbf{C}$onstraint $\mathbf{S}$pecificity。
即時要求/制約の数を増やすことで、迅速な特異性を高め、トレーニングデータの中で高品質な物語をリテリングすることを妨げることができる。
その結果,CS4 は人間のアノテーションを使わずに LLM の創造性を間接的に測定する権限を与えてくれる。
LLaMA, Gemma, およびMistralに関する実験は, LLMが高度に特定のプロンプトを扱う際に直面する創造的課題を浮き彫りにするだけでなく, 異なる LLM が異なる制約数の下で非常に異なる性能を示し, モデルの指示追従能力と物語コヒーレンスとのバランスを異にすることを示した。
さらに、OLMoに関する我々の実験は、LHF(Learning from Human Feedback)は、LLMがトレーニングデータからより良いストーリーを選択するのに役立つことを示唆しています。
ベンチマークはhttps://github.com/anirudhlakkaraju/cs4_benchmarkで公開されている。
関連論文リスト
- LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMは、人間が扱いやすいようないくつかの基本的なタスク、例えば単語トラウベリーの文字数rを数えるのに苦労する。
我々は,高度な数学的およびコーディング推論能力の伝達可能性について,特殊なLCMから単純なカウントタスクまでの測定を行う。
微調整や文脈内学習といった戦略と比較すると、係り受け推論はLLMのタスクをより知覚するのに役立つ最も堅牢で効率的な方法であることがわかる。
論文 参考訳(メタデータ) (2024-10-18T04:17:16Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを融合して、最小の外部入力で正確な推論を改善する新しい推論手法である。
GIVE は LLM エージェントをガイドして,最も関連する専門家データ (observe) を選択し,クエリ固有の発散思考 (reflect) に従事し,その情報を合成して最終的な出力 (speak) を生成する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - ChatGLM-Math: Improving Math Problem-Solving in Large Language Models with a Self-Critique Pipeline [42.61538071832468]
大規模言語モデル(LLM)は、人間の言語の優れた習得を示すが、数学的な問題解決を必要とする現実世界のアプリケーションでは依然として苦戦している。
LLMアライメントのフィードバック学習段階における課題に対処する自己批判パイプラインを調整します。
論文 参考訳(メタデータ) (2024-04-03T17:51:18Z) - Can Large Language Models Play Games? A Case Study of A Self-Play
Approach [61.15761840203145]
LLM(Large Language Models)は、インターネットからの広範なデータを利用して、幅広い事前知識を格納する。
Monte-Carlo Tree Search (MCTS)は、信頼性の高い意思決定ソリューションを提供する検索アルゴリズムである。
この研究は、ターンベースのゼロサムゲームを効率的に解決するために、MCTSセルフプレイでLLMを活性化させる革新的なアプローチを導入している。
論文 参考訳(メタデータ) (2024-03-08T19:16:29Z) - When LLMs Meet Cunning Texts: A Fallacy Understanding Benchmark for Large Language Models [59.84769254832941]
本稿では,人間が理解し易いが,理解し難い文を含むFaLlacy Understanding Benchmark (FLUB)を提案する。
具体的には、FLUBが焦点を絞ったcunningテキストは、主に、実際のインターネット環境から収集されたトリッキーでユーモラスで誤解を招くテキストで構成されている。
FLUBに基づいて,複数の代表および先進LLMの性能について検討する。
論文 参考訳(メタデータ) (2024-02-16T22:12:53Z) - Beyond Answers: Transferring Reasoning Capabilities to Smaller LLMs Using Multi-Teacher Knowledge Distillation [23.736611338497244]
TinyLLMは、複数の大規模LLMから小学生のLLMを学ぶための新しい知識蒸留パラダイムである。
そこで本研究では,文脈的に適切なシナリオにおいて,理科が正確で基礎が整っていることを保証するために,文脈内サンプル生成と教師強制型Chain-of-Thought戦略を導入する。
その結果,TinyLLMはモデルサイズがかなり小さいにもかかわらず,大きなLLMよりも優れていた。
論文 参考訳(メタデータ) (2024-02-07T06:48:24Z) - AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations [52.43593893122206]
Alignedcotは、大規模言語モデルを呼び出すためのコンテキスト内学習技術である。
ゼロショットシナリオでは、一貫した正しいステップワイズプロンプトを達成する。
数学的推論とコモンセンス推論の実験を行う。
論文 参考訳(メタデータ) (2023-11-22T17:24:21Z) - Small Language Models Improve Giants by Rewriting Their Outputs [18.025736098795296]
本研究では,大規模言語モデル(LLM)の性能向上にトレーニングデータを活用するという課題に,微調整なしで対処する。
我々は、数発のプロンプトによってLSMから候補のプールを作成し、コンパクトモデルLM-corrector(LMCor)を用いて、これらの候補をマージして拡張出力を生成するように特別に訓練した。
4つの自然言語生成タスクの実験により、小さな LMCor モデル (250M) でさえ、LLM (62B) の少数ショット性能を大幅に改善し、マッチングや標準微調整よりも優れることを示した。
論文 参考訳(メタデータ) (2023-05-22T22:07:50Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。