論文の概要: Exploring Strengths and Weaknesses of Super-Resolution Attack in Deepfake Detection
- arxiv url: http://arxiv.org/abs/2410.04205v1
- Date: Sat, 5 Oct 2024 15:47:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 13:31:47.746251
- Title: Exploring Strengths and Weaknesses of Super-Resolution Attack in Deepfake Detection
- Title(参考訳): ディープフェイク検出における超解法攻撃の強度と弱さの探索
- Authors: Davide Alessandro Coccomini, Roberto Caldelli, Fabrizio Falchi, Claudio Gennaro, Giuseppe Amato,
- Abstract要約: 我々は、異なる超解像技術に基づく超解像攻撃の可能性を探る。
超分解能プロセスはディープフェイク生成モデルによって導入されたアーティファクトを隠蔽するのに有効であるが、完全に合成された画像に含まれる痕跡を隠蔽するのに失敗することを示す。
本研究では,このような攻撃に対するロバスト性を向上させるため,検出器のトレーニングプロセスにいくつかの変更を加えることを提案する。
- 参考スコア(独自算出の注目度): 9.372782789857803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image manipulation is rapidly evolving, allowing the creation of credible content that can be used to bend reality. Although the results of deepfake detectors are promising, deepfakes can be made even more complicated to detect through adversarial attacks. They aim to further manipulate the image to camouflage deepfakes' artifacts or to insert signals making the image appear pristine. In this paper, we further explore the potential of super-resolution attacks based on different super-resolution techniques and with different scales that can impact the performance of deepfake detectors with more or less intensity. We also evaluated the impact of the attack on more diverse datasets discovering that the super-resolution process is effective in hiding the artifacts introduced by deepfake generation models but fails in hiding the traces contained in fully synthetic images. Finally, we propose some changes to the detectors' training process to improve their robustness to this kind of attack.
- Abstract(参考訳): 画像操作は急速に進化しており、現実を曲げるために使用できる信頼できるコンテンツを作成することができる。
ディープフェイク検出器の結果は有望だが、ディープフェイクは敵の攻撃によってさらに複雑に検出できる。
彼らはさらに画像を操作して、ディープフェイクのアーティファクトをカモフラージュしたり、イメージがプリスタントに見えるように信号を挿入したりすることを目指している。
本稿では,様々な超解像技術に基づく超解像攻撃の可能性と,多かれ少なかれ強度の深いディープフェイク検出器の性能に影響を及ぼすスケールの違いについて検討する。
また、この攻撃がより多様なデータセットに与える影響を評価し、この超解像プロセスがディープフェイク生成モデルによって導入されたアーティファクトを隠蔽するのに有効であるが、完全に合成された画像に含まれる痕跡を隠蔽するのに失敗することを発見した。
最後に、このような攻撃に対するロバスト性を改善するため、検出器のトレーニングプロセスにいくつかの変更を加えることを提案する。
関連論文リスト
- Adversarial Magnification to Deceive Deepfake Detection through Super Resolution [9.372782789857803]
本稿では, 深度検出における対角攻撃の可能性として, 超解像法の適用について検討する。
画像の視覚的外観におけるこれらの手法による最小限の変化は、ディープフェイク検出システムの性能に大きな影響を及ぼすことを示す。
そこで我々は,超解像を高速かつブラックボックスとして,偽画像のキャモフラージュやプリスタン画像の偽アラーム生成に有効な手法として,新しい攻撃法を提案する。
論文 参考訳(メタデータ) (2024-07-02T21:17:36Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Turn Fake into Real: Adversarial Head Turn Attacks Against Deepfake
Detection [58.1263969438364]
本稿では,3次元対向顔視によるディープフェイク検出器に対する最初の試みとして,対向頭部旋回(AdvHeat)を提案する。
実験では、現実的なブラックボックスシナリオにおいて、様々な検出器のAdvHeatに対する脆弱性を検証する。
さらなる分析により、AdvHeatは、クロス検出器転送性と防御に対する堅牢性の両方に対する従来の攻撃よりも優れていることが示されている。
論文 参考訳(メタデータ) (2023-09-03T07:01:34Z) - Dual Adversarial Resilience for Collaborating Robust Underwater Image
Enhancement and Perception [54.672052775549]
本研究では,水中画像の強調と検出を行うために,CARNetと呼ばれる協調的対向レジリエンスネットワークを導入する。
本稿では,ネットワークが様々な種類の攻撃を識別・除去できるように,視覚駆動型と知覚駆動型の両方による同時攻撃訓練戦略を提案する。
実験により,提案手法は画像の高画質化を図り,最先端の手法よりも平均6.71%高い検出精度が得られた。
論文 参考訳(メタデータ) (2023-09-03T06:52:05Z) - How Generalizable are Deepfake Image Detectors? An Empirical Study [4.42204674141385]
本研究は,ディープフェイク検出器の一般化性に関する最初の実証的研究である。
本研究では,6つのディープフェイクデータセット,5つのディープフェイク画像検出手法,および2つのモデル拡張アプローチを用いた。
検出器は, 合成法に特有の不要な特性を学習し, 識別的特徴の抽出に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-08-08T10:30:34Z) - On the Vulnerability of DeepFake Detectors to Attacks Generated by
Denoising Diffusion Models [0.5827521884806072]
我々は,最新の生成手法によって生成されたブラックボックス攻撃に対する単一イメージのディープフェイク検出器の脆弱性について検討した。
われわれの実験はFaceForensics++で行われている。
以上の結果から,ディープフェイクの再建過程において,1段階の偏微分拡散のみを用いることで,検出可能性を大幅に低下させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-11T15:57:51Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
本研究では,検出問題を(一級)アウト・オブ・ディストリビューション検出タスクとして形式化する,SeeABLEと呼ばれる新しいディープフェイク検出器を提案する。
SeeABLEは、新しい回帰ベースの有界コントラスト損失を使用して、乱れた顔を事前定義されたプロトタイプにプッシュする。
我々のモデルは競合する最先端の検出器よりも高い性能を示しながら、高度に一般化能力を示す。
論文 参考訳(メタデータ) (2022-11-21T09:38:30Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z) - Fighting Deepfake by Exposing the Convolutional Traces on Images [0.0]
FACEAPPのようなモバイルアプリは、最も高度なGAN(Generative Adversarial Networks)を使用して、人間の顔写真に極端な変換を生成する。
この種のメディアオブジェクトはDeepfakeという名前を取って、マルチメディアの法医学分野における新たな課題であるDeepfake検出課題を提起した。
本稿では,画像からディープフェイク指紋を抽出する手法を提案する。
論文 参考訳(メタデータ) (2020-08-07T08:49:23Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。