Equivariant Polynomial Functional Networks
- URL: http://arxiv.org/abs/2410.04213v1
- Date: Sat, 5 Oct 2024 16:10:19 GMT
- Title: Equivariant Polynomial Functional Networks
- Authors: Thieu N. Vo, Viet-Hoang Tran, Tho Tran Huu, An Nguyen The, Thanh Tran, Minh-Khoi Nguyen-Nhat, Duy-Tung Pham, Tan Minh Nguyen,
- Abstract summary: A key design principle of Neural Functional Networks (NFNs) is their adherence to the permutation and scaling symmetries inherent in the connectionist structure of the input neural networks.
Recent NFNs have been proposed with permutation and scaling equivariance based on either graph-based message-passing mechanisms or parameter-sharing mechanisms.
We propose a novel solution with the development of MAG-NFN (Monomial mAtrix Group Equivariant Polynomial NFN)
- Score: 2.3963215252605172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Functional Networks (NFNs) have gained increasing interest due to their wide range of applications, including extracting information from implicit representations of data, editing network weights, and evaluating policies. A key design principle of NFNs is their adherence to the permutation and scaling symmetries inherent in the connectionist structure of the input neural networks. Recent NFNs have been proposed with permutation and scaling equivariance based on either graph-based message-passing mechanisms or parameter-sharing mechanisms. However, graph-based equivariant NFNs suffer from high memory consumption and long running times. On the other hand, parameter-sharing-based NFNs built upon equivariant linear layers exhibit lower memory consumption and faster running time, yet their expressivity is limited due to the large size of the symmetric group of the input neural networks. The challenge of designing a permutation and scaling equivariant NFN that maintains low memory consumption and running time while preserving expressivity remains unresolved. In this paper, we propose a novel solution with the development of MAGEP-NFN (Monomial mAtrix Group Equivariant Polynomial NFN). Our approach follows the parameter-sharing mechanism but differs from previous works by constructing a nonlinear equivariant layer represented as a polynomial in the input weights. This polynomial formulation enables us to incorporate additional relationships between weights from different input hidden layers, enhancing the model's expressivity while keeping memory consumption and running time low, thereby addressing the aforementioned challenge. We provide empirical evidence demonstrating that MAGEP-NFN achieves competitive performance and efficiency compared to existing baselines.
Related papers
- Monomial Matrix Group Equivariant Neural Functional Networks [1.797555376258229]
We extend the study of the group action on the network weights by incorporating scaling/sign-flipping symmetries.
We name our new family of NFNs the Monomial Matrix Group Equivariant Neural Functional Networks (Monomial-NFN)
arXiv Detail & Related papers (2024-09-18T04:36:05Z) - Gaussian Process Neural Additive Models [3.7969209746164325]
We propose a new subclass of Neural Additive Models (NAMs) that use a single-layer neural network construction of the Gaussian process via random Fourier features.
GP-NAMs have the advantage of a convex objective function and number of trainable parameters that grows linearly with feature dimensionality.
We show that GP-NAM achieves comparable or better performance in both classification and regression tasks with a large reduction in the number of parameters.
arXiv Detail & Related papers (2024-02-19T20:29:34Z) - Equivariant Matrix Function Neural Networks [1.8717045355288808]
We introduce Matrix Function Neural Networks (MFNs), a novel architecture that parameterizes non-local interactions through analytic matrix equivariant functions.
MFNs is able to capture intricate non-local interactions in quantum systems, paving the way to new state-of-the-art force fields.
arXiv Detail & Related papers (2023-10-16T14:17:00Z) - Neural Functional Transformers [99.98750156515437]
This paper uses the attention mechanism to define a novel set of permutation equivariant weight-space layers called neural functional Transformers (NFTs)
NFTs respect weight-space permutation symmetries while incorporating the advantages of attention, which have exhibited remarkable success across multiple domains.
We also leverage NFTs to develop Inr2Array, a novel method for computing permutation invariant representations from the weights of implicit neural representations (INRs)
arXiv Detail & Related papers (2023-05-22T23:38:27Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Smooth Mathematical Function from Compact Neural Networks [0.0]
We get NNs that generate highly accurate and highly smooth function, which only comprised of a few weight parameters.
New activation function, meta-batch method, features of numerical data, meta-augmentation with meta parameters are presented.
arXiv Detail & Related papers (2022-12-31T11:33:24Z) - Interrelation of equivariant Gaussian processes and convolutional neural
networks [77.34726150561087]
Currently there exists rather promising new trend in machine leaning (ML) based on the relationship between neural networks (NN) and Gaussian processes (GP)
In this work we establish a relationship between the many-channel limit for CNNs equivariant with respect to two-dimensional Euclidean group with vector-valued neuron activations and the corresponding independently introduced equivariant Gaussian processes (GP)
arXiv Detail & Related papers (2022-09-17T17:02:35Z) - Equivariant Neural Network for Factor Graphs [83.26543234955855]
We propose two inference models: Factor-Equivariant Neural Belief Propagation (FE-NBP) and Factor-Equivariant Graph Neural Networks (FE-GNN)
FE-NBP achieves state-of-the-art performance on small datasets while FE-GNN achieves state-of-the-art performance on large datasets.
arXiv Detail & Related papers (2021-09-29T06:54:04Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.