A class of ternary codes with few weights
- URL: http://arxiv.org/abs/2410.04216v1
- Date: Sat, 5 Oct 2024 16:15:50 GMT
- Title: A class of ternary codes with few weights
- Authors: Kaimin Cheng,
- Abstract summary: In this paper, we investigate a ternary code $mathcalC$ of length $n$, defined by $mathcalC$ := (textTr) := (textTr(dx), dots, dots, d_n$.
Using recent results on explicit evaluations of exponential sums, we determine the Weil bound, and techniques, we show that the dual code of $mathcalC$ is optimal with respect to the Hamming bound.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Let $\ell^m$ be a power with $\ell$ a prime greater than $3$ and $m$ a positive integer such that $3$ is a primitive root modulo $2\ell^m$. Let $\mathbb{F}_3$ be the finite field of order $3$, and let $\mathbb{F}$ be the $\ell^{m-1}(\ell-1)$-th extension field of $\mathbb{F}_3$. Denote by $\text{Tr}$ the absolute trace map from $\mathbb{F}$ to $\mathbb{F}_3$. For any $\alpha \in \mathbb{F}_3$ and $\beta \in\mathbb{F}$, let $D$ be the set of nonzero solutions in $\mathbb{F}$ to the equation $\text{Tr}(x^{\frac{q-1}{2\ell^m}} + \beta x) = \alpha$. In this paper, we investigate a ternary code $\mathcal{C}$ of length $n$, defined by $\mathcal{C} := \{(\text{Tr}(d_1x), \text{Tr}(d_2x), \dots, \text{Tr}(d_nx)) : x \in \mathbb{F}\}$ when we rewrite $D = \{d_1, d_2, \dots, d_n\}$. Using recent results on explicit evaluations of exponential sums, the Weil bound, and combinatorial techniques, we determine the Hamming weight distribution of the code $\mathcal{C}$. Furthermore, we show that when $\alpha = \beta =0$, the dual code of $\mathcal{C}$ is optimal with respect to the Hamming bound.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Synthesis and Arithmetic of Single Qutrit Circuits [0.9208007322096532]
We study single qutrit quantum circuits consisting of words over the Clifford+ $mathcalD$ gate set.
We characterize classes of qutrit unit vectors $z$ with entries in $mathbbZ[xi, frac1chi]$.
arXiv Detail & Related papers (2023-11-15T04:50:41Z) - A Fast Optimization View: Reformulating Single Layer Attention in LLM
Based on Tensor and SVM Trick, and Solving It in Matrix Multiplication Time [7.613259578185218]
We focus on giving a provable guarantee for the one-layer attention network objective function $L(X,Y).
In a multi-layer LLM network, the matrix $B in mathbbRn times d2$ can be viewed as the output of a layer.
We provide an iterative algorithm to train loss function $L(X,Y)$ up $epsilon$ that runs in $widetildeO( (cal T_mathrmmat(n,d) + d
arXiv Detail & Related papers (2023-09-14T04:23:40Z) - Increasing subsequences, matrix loci, and Viennot shadows [0.0]
We show that the quotient $mathbbF[mathbfx_n times n]/I_n$ admits a standard monomial basis.
We also calculate the structure of $mathbbF[mathbfx_n times n]/I_n$ as a graded $mathfrakS_n times mathfrakS_n$-module.
arXiv Detail & Related papers (2023-06-14T19:48:01Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - On Outer Bi-Lipschitz Extensions of Linear Johnson-Lindenstrauss
Embeddings of Low-Dimensional Submanifolds of $\mathbb{R}^N$ [0.24366811507669117]
Let $mathcalM$ be a compact $d$-dimensional submanifold of $mathbbRN$ with reach $tau$ and volume $V_mathcal M$.
We prove that a nonlinear function $f: mathbbRN rightarrow mathbbRmm exists with $m leq C left(d / epsilon2right) log left(fracsqrt[d]V_math
arXiv Detail & Related papers (2022-06-07T15:10:46Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Learning low-degree functions from a logarithmic number of random
queries [77.34726150561087]
We prove that for any integer $ninmathbbN$, $din1,ldots,n$ and any $varepsilon,deltain(0,1)$, a bounded function $f:-1,1nto[-1,1]$ of degree at most $d$ can be learned.
arXiv Detail & Related papers (2021-09-21T13:19:04Z) - Linear Bandits on Uniformly Convex Sets [88.3673525964507]
Linear bandit algorithms yield $tildemathcalO(nsqrtT)$ pseudo-regret bounds on compact convex action sets.
Two types of structural assumptions lead to better pseudo-regret bounds.
arXiv Detail & Related papers (2021-03-10T07:33:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.