Navigating the Future of Healthcare HR: Agile Strategies for Overcoming Modern Challenges
- URL: http://arxiv.org/abs/2410.04246v1
- Date: Sat, 5 Oct 2024 18:07:19 GMT
- Title: Navigating the Future of Healthcare HR: Agile Strategies for Overcoming Modern Challenges
- Authors: Syeda Aynul Karim, Md. Juniadul Islam,
- Abstract summary: This study examines the challenges hospitals encounter in managing human resources and proposes potential solutions.
It provides an overview of current HR practices in hospitals, highlighting key issues affecting recruitment, retention, and professional development of medical staff.
The study further explores how these challenges impact patient outcomes and overall hospital performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study examines the challenges hospitals encounter in managing human resources and proposes potential solutions. It provides an overview of current HR practices in hospitals, highlighting key issues affecting recruitment, retention, and professional development of medical staff. The study further explores how these challenges impact patient outcomes and overall hospital performance. A comprehensive framework for effective human resource man agement is presented, outlining strategies for recruiting, retaining, training, and advancing medical professionals. This framework is informed by industry best practices and the latest research in healthcare HR management. The findings underscore that effective HR management is crucial for hospital success and offer recommendations for executives and policymakers to enhance their HR strategies. Additionally, our project introduces a Dropbox feature to facilitate patient care. This allows patients to report their issues, enabling doctors to quickly address ailments via our app. Patients can easily identify local doctors and schedule appointments. The app will also provide emergency medical services and accept online payments, while maintaining a record of patient interactions. Both patients and doctors can file complaints through the app, ensuring appropriate follow-up actions.
Related papers
- STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Med is designed to train a policy model capable of auto-generating medical visual instruction data.
We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks.
arXiv Detail & Related papers (2024-06-28T15:01:23Z) - Challenges for Responsible AI Design and Workflow Integration in Healthcare: A Case Study of Automatic Feeding Tube Qualification in Radiology [35.284458448940796]
Nasogastric tubes (NGTs) are feeding tubes that are inserted through the nose into the stomach to deliver nutrition or medication.
Recent AI developments demonstrate the feasibility of robustly detecting NGT placement from Chest X-ray images.
We present a human-centered approach to the problem and describe insights derived following contextual inquiry and in-depth interviews with 15 clinical stakeholders.
arXiv Detail & Related papers (2024-05-08T14:16:22Z) - Yes, this is what I was looking for! Towards Multi-modal Medical
Consultation Concern Summary Generation [46.42604861624895]
We propose a new task of multi-modal medical concern summary generation.
Nonverbal cues, such as patients' gestures and facial expressions, aid in accurately identifying patients' concerns.
We construct the first multi-modal medical concern summary generation corpus.
arXiv Detail & Related papers (2024-01-10T12:56:47Z) - Validating a virtual human and automated feedback system for training
doctor-patient communication skills [3.0354760313198796]
We present the development and validation of a scalable, easily accessible, digital tool known as the Standardized Online Patient for Health Interaction Education (SOPHIE)
We found that participants who underwent SOPHIE performed significantly better than the control in overall communication, aggregate scores, empowering the patient, and showing empathy.
One day, we hope that SOPHIE will help make communication training resources more accessible by providing a scalable option to supplement existing resources.
arXiv Detail & Related papers (2023-06-27T05:23:08Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - Doctor Recommendation in Online Health Forums via Expertise Learning [12.264865055778388]
This paper studies a novel task of doctor recommendation to enable automatic pairing of a patient to a doctor with relevant expertise.
We study the joint effects of their profiles and previous dialogues with other patients and explore their interactions via self-learning.
For experiments, a large-scale dataset is collected from Chunyu Yisheng, a Chinese online health forum.
arXiv Detail & Related papers (2022-03-06T10:39:48Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data.
We are building MedPerf, an open framework for benchmarking machine learning in the medical domain.
arXiv Detail & Related papers (2021-09-29T18:09:41Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - DFUC2020: Analysis Towards Diabetic Foot Ulcer Detection [4.280110205022879]
Every 20 seconds, a limb is amputated somewhere in the world due to diabetes.
Recent research has focused on the creation of cloud-based detection algorithms.
Patients (or a carer, partner or family member) could use themselves at home to monitor their condition and to detect the appearance of a diabetic foot ulcer (DFU)
arXiv Detail & Related papers (2020-04-24T16:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.